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Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)

Numerical solution of transient eddy current problems with
input current intensities as boundary data
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The aim of this paper is to analyze a numerical method to solve transient eddy current problems with
input current intensities as data, formulated in terms of the magnetic field in abounded domain including
conductors and dielectrics. To this end, we introduce a time-dependent weak formulation and prove
its well-posedness. Under appropriate hypotheses on the input current intensities, we show that the
weak solution has additional regularity and satisfies strong forms of the equations. We propose a finite
element method for space discretization based on Néd́elec edge elements on tetrahedral mesh, for which
we prove well-posedness and error estimates. Furthermore, we introduce an implicit Euler scheme for
time discretization and prove error estimates for the fully discrete problem.Moreover, a magnetic scalar
potential is introduced to deal with the curl-free condition in the dielectric domain. This approach leads
to an important saving in computational effort. Finally, the method is applied tosolve two problems: a
test with a known analytical solution and an application to electromagnetic forming.

Keywords: Eddy current problems, time-dependent electromagnetic problems,input current intensities,
finite elements.

1. Introduction

The objective of this work is to analyze a time-dependent eddy current problem defined in a 3D bounded
domain including conducting and dielectric materials whenthe current source is given in terms of cur-
rent intensities. This model arises in applications where the problem is written in a bounded domain
and it is necessary to link the electromagnetic fields with the sources provided by an external circuit,
voltage drops and/or current intensities (see, for instance, Bossavit (2000)). In particular, we are inter-
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ested in imposing the current intensities entering some conducting regions by using non-local boundary
conditions. In this framework, we refer the reader to AlonsoRodŕıguez & Valli (2008), where the au-
thors give a systematic approach to eddy-current problems driven by voltage or current intensity in the
harmonic regime. Numerical analysis of different finite element methods to solve this kind of models
can be found in Berḿudezet al. (2005b); Alonso Rodrı́guezet al. (2009); in both cases, the proposed
numerical method has been applied to simulate metallurgical furnaces by means of harmonic eddy cur-
rent models subjected to boundary conditions proposed in Bossavit (2000). However, if the exciting
source is non-sinusoidal or if the materials have a non-linear behavior, a genuine transient eddy current
problem must be solved. This is why the present paper pretends to extend the analysis of the model
studied in Berḿudezet al. (2005b) for the harmonic regime to the general transient situation.

In the literature, we can find several papers devoted to the numerical analysis of the 3D time-
dependent eddy current model, both in bounded and unboundeddomains by using FEM and BEM-FEM
methods Acevedo & Meddahi (2010); Acevedoet al.(2009); Kang Kim (2009); Kanget al.(2006); Ma
(2008); Meddahi & Selgas (2008); Zhenget al. (2006). However, in all these works, the current source
is given as a volume current in a conducting region and the publications differ in the primary unknown
of each formulation. Moreover, the models proposed in bounded domains only deal with homogeneous
essential and/or natural boundary conditions. Thus, to theauthor’s knowledge, the transient linear eddy
current problem by imposing the current intensities has notbeen analyzed before, and this is the main
objective of the present paper.

By following Bermúdezet al. (2005b), we propose a formulation based on the magnetic fieldin
the conductor regions and a scalar magnetic potential in thedielectric ones. The scalar potential is
defined from the curl-free condition of the magnetic field in the air and can be multivalued in order to
consider general topologies. Notice that the introductionof this potential has two main advantages: it
leads to an important saving from a computational point of view and allows us to impose directly the
current intensities in terms of the jumps of the scalar potential. From a mathematical point of view,
we will obtain a parabolic problem and prove its well posedness by using a suitable lifting from the
boundary conditions. If the intensities are smooth enough,we prove additional regularity properties
for the magnetic field; these properties are used to prove that the weak solution satisfies in some sense
the strong eddy current model posed initially. We propose a finite element method combined with an
implicit Euler time discretization to numerically solve the problem. Concerning the space discretization,
the magnetic field is approximated by the lowest order Néd́elec edge finite elements and the magnetic
potential by standard piecewise linear continuous elements. The current intensities are imposed as jumps
of the multivalued magnetic potential on some prescribed cut surfaces. We obtain convergence results
for the main physical quantities, namely the magnetic field and the current density.

The outline of the paper is as follows: In Section 2 we introduce the transient eddy current model
and state the geometrical framework for our analysis. In Section 3 we obtain a weak formulation of the
problem. We prove that it is well-posed as well as a regularity result. In Section 4 we introduce a semi-
discretization based on finite elements and prove error estimates. In Section 5 we propose an implicit
Euler scheme for time discretization and obtain error estimates for the fully discretized problem. In
Section 6, we report some numerical results; first, we present the results obtained for an example with
known analytical solution, which confirms the order of convergence predicted by the theory and allows
us to assess the performance of the method; secondly, we simulate an application of electromagnetic
forming, where the transient simulation in the time domain is mandatory.

Throughout the paper, we use standard notation for functionspaces, norms, and duality pairings.
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2. Time-dependent eddy current problem with input current intensities as boundary data

Three dimensional eddy current problems describe low-frequency electromagnetic phenomena. In this
case, displacement currents may be neglected (see (Bossavit, 2000, Chapter 8)) so Maxwell’s equations
become

curlHHH = JJJ in (0,T)×R
3, (2.1)

∂t µHHH + curlEEE = 000 in (0,T)×R
3, (2.2)

div(µHHH) = 0 in (0,T)×R
3, (2.3)

JJJ = σEEE in (0,T)×R
3, (2.4)

whereEEE(t,xxx) is the electric field,HHH(t,xxx) is the magnetic field,JJJ(t,xxx) the current density,µ the magnetic
permeability andσ the electric conductivity. Here and thereafter, we use boldface letters to denote vector
fields and variables as well as vector-valued operators.

We are interested in solving these equations fort ∈ [0,T] in a simply connected three-dimensional
bounded domainΩ , which consists of two parts,ΩC andΩD, occupied by conductors and dielectrics,
respectively. The electric conductivityσ vanishes inΩD. The mathematical framework we are going
to analyze covers transient eddy current problems posed on different geometrical settings. In Figure 1
we sketch a particular case including several connected components of the conducting domain with
different topological properties.

The domainΩ is assumed to have a Lipschitz-continuous connected boundary ∂Ω , which splits
into two parts:∂Ω = ΓC∪ΓD, with ΓC := ∂ΩC∩∂Ω andΓD := ∂ΩD∩∂Ω being the outer boundaries of
the conducting and dielectric domains, respectively. We denoteΓI := ∂ΩC∩∂ΩD, the interface between
dielectrics and conductors. We also denote bynnn the outer unit normal vector to∂Ω .

As shown in Figure 1, the connected components of the conducting domain are of two types: “in-
ductors” which go through the boundary ofΩ , and “workpieces” which have their closure included in
Ω . We denoteΩ 1

C
, . . . ,Ω N

C
the former andΩ N+1

C
, . . . ,Ω M
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the latter.
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We assume that the outer boundary of each inductor,∂Ω n
C
∩ ∂Ω (n = 1, . . . ,N), has two connected

components, both with non-zero measure: the current entrance,Γ n
J

, where the inductor is connected to
a transient electric current source, and the current exit,Γ n

E
. Finally, we denoteΓJ := Γ 1

J
∪ ·· · ∪Γ N

J
and

ΓE := Γ 1
E
∪·· ·∪Γ N

E
. Further, we assume thatΓJ∩ΓE = /0.

We consider thatµ andσ are time-independent, and that there exist constantsµ, µ, σ andσ such
that

0 < µ 6 µ(xxx) 6 µ, a.e.xxx∈ Ω ,

0 < σ 6 σ(xxx) 6 σ , a.e.xxx∈ ΩC, σ ≡ 0 in ΩD.

We have to complete the model with an initial conditionHHH(0) = HHH0 and suitable boundary con-
ditions. For the latter, we consider the following ones which were proposed in Bossavit (2000) and
analyzed in Berḿudezet al. (2005b) in the harmonic regime:

∫

Γ n
J

curlHHH(t) ·nnn = In(t), n = 1, . . . ,N, t ∈ [0,T], (2.5)

EEE×nnn = 000 on[0,T]×ΓE, (2.6)

EEE×nnn = 000 on[0,T]×ΓJ, (2.7)

µHHH ·nnn = 0 on[0,T]×∂Ω , (2.8)

where the only data are the current intensitiesIn through each surfaceΓ n
J

, which are assumed to satisfy
In ∈ H1(0,T), n = 1, . . . ,N.

Conditions (2.5) account for the input current intensitiesthrough eachΓ n
J

. Conditions (2.6), (2.7)
and (2.8) have been proposed in Bossavit (2000) in a more general setting. They will appear as natural
boundary conditions of our weak formulation of the problem.The former implies the assumption that
the electric current is normal to the current entrance and exit surfaces, whereas the latter means that the
magnetic field is tangential to the boundary. (See Bermúdezet al. (2005a) for further discussions on
these boundary conditions and Bermúdezet al.(2005b) for its application on the modeling of an electric
furnace.)

3. Variational formulation, existence and uniqueness

Our first goal is to give a variational formulation in terms ofthe magnetic field to solve the transient
eddy current problem. To do this, we follow the arguments from Berḿudezet al. (2005b), which we
include for the sake of completeness.

By testing (2.2) with a smooth functionGGG such that

curlGGG = 000 in ΩD and
∫

Γ n
J

curlGGG·nnn = 0, n = 1, . . . ,N, (3.1)

we have ∫

Ω
µ∂tHHH ·GGG+

∫

Ω
curlEEE ·GGG = 0. (3.2)

Moreover, by formal calculations, boundary condition (2.8) implies that the tangential component
of the electric fieldEEE is a gradient. Indeed, after integratingµ∂tHHH ·nnn on any surfaceScontained in∂Ω ,
by using (2.2) and Stokes Theorem, we obtain

0 =
∫

S
µ∂tHHH ·nnn = −

∫

S
curlEEE ·nnn = −

∫

∂S
EEE · ttt = −

∫

∂S
nnn× (EEE×nnn) · ttt,
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with ttt being a unit vector tangent to∂S. Therefore, since∂Ω is simply connected, we can assert that
there exists a sufficiently smooth functionV defined inΩ up to a constant, such thatV|∂Ω is a surface
potential of the tangential component ofEEE; namely,EEE×nnn = −∇V ×nnn on∂Ω . On the other hand, (2.6)
and (2.7) imply thatV must be constant on each connected component ofΓJ andΓE. Furthermore, in our
model case, we will assume that the potential is the same on the wholeΓE. HenceV can be chosen to be
null onΓE. Then, we can transform the second term of (3.2) by using Green’s formulas as follows:

∫

Ω
curlEEE ·GGG =

∫

Ω
EEE · curlGGG−

∫

∂Ω
EEE×nnn·GGG =

∫

Ω
EEE · curlGGG, (3.3)

the latter equality because

−
∫

∂Ω
EEE×nnn·GGG =

∫

∂Ω
∇V ×nnn·GGG =

∫

Ω
∇V · curlGGG =

∫

∂Ω
V curlGGG·nnn = 0,

where, in the last equality, we have used thatV = 0 onΓE, V is constant on eachΓ n
J

and (3.1).
Now, by substituting (3.3) in (3.2), we obtain

∫

Ω
µ∂tHHH ·GGG+

∫

Ω
EEE · curlGGG = 0.

Moreover, because of the first equation in (3.1), the second integral above reduces to the conducting
domainΩC, where (2.1) and (2.4) lead toEEE = 1

σ curlHHH. Thus, we obtain

∫

Ω
µ ∂tHHH ·GGG+

∫

ΩC

1
σ

curlHHH · curlGGG = 0.

Let
X := {GGG∈ H(curl;Ω) : curlGGG = 000 in ΩD}.

For all GGG∈ X , curlGGG ·nnn∈ H−1/2(∂Ω) andcurlGGG ·nnn = 0 onΓD. Then〈curlGGG ·nnn,1〉Γ n
J

is well defined.

Indeed, letζ be any smooth function defined in∂Ω such thatζ = 1 on Γ n
J

and ζ = 0 on ΓE (such
functions exist becauseΓJ∩ΓE = /0). Then〈curlGGG·nnn,1〉Γ n

J
:= 〈curlGGG·nnn,ζ 〉∂Ω is well defined and its

value does not depend on the particular extensionζ . Here and thereafter,〈·, ·〉∂Ω denotes the duality
pairing in H−1/2(∂Ω)×H1/2(∂Ω). Let

V :=
{

GGG∈ X : 〈curlGGG·nnn,1〉Γ n
J

= 0, n = 1, . . . ,N
}

,

which is a closed subspace ofX .
We are led to the following problem: FindHHH such that

∫

Γ n
J

curlHHH(t) ·nnn = In(t), n = 1, . . . ,N, (3.4)

∫

Ω
µ ∂tHHH(t) ·GGG+

∫

ΩC

1
σ

curlHHH(t) · curlGGG = 0 ∀GGG∈ V , (3.5)

HHH(0) = HHH0. (3.6)
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3.1 Introducing a magnetic potential

In what follows we show how problem (3.4)–(3.6) can be rewritten by replacing the magnetic field in
the dielectric domainΩD by a (scalar) magnetic potential.

We assume there existL connected “cut” surfacesΣn ⊂ ΩD, n = 1, · · · ,L, such that∂Σn ⊂ ∂ΩD

andΩ̃D := ΩD \
⋃L

n=1 Σn is pseudo-Lipschitz and simply connected (see, for instance, Amroucheet al.
(1998)). We also assume thatΣ̄n∩ Σ̄m = /0 for n 6= m (see Figure 1). For each inductor,Ω n

C
, n= 1, . . . ,N,

there exists one cut surfaceΣn such that, necessarily,∂Σn∩∂ΩD 6= /0 (see Figure 1). The remaining cut
surfaces,ΣN+1, . . . ,ΣL, are assumed to be contained in the interior ofΩD (see Figure 1, again).

For each cut surfaceΣn, we assume there exists a surfaceSn ⊂ Ω n
C
, with ∂Sn ⊂ ∂Ω n

C
, and such that

its boundaryγn is a simple closed curve. We assume thatγn intersects once and only onceΣn and it does
not intersectΣm, m 6= n. Moreover, forn = 1, . . . ,N, we choseSn = Γ n

J
.

We denote the two faces of eachΣn by Σ−
n andΣ+

n and fix a unit normalnnnn on Σn as the “outer”
normal toΩD\Σn alongΣ+

n . We choose an orientation for eachγn by taking its initial and end points on
Σ−

n andΣ+
n , respectively. We denote bytttn the unit vector tangent toγn according with this orientation.

Each functionΨ̃ ∈ H1(Ω̃D) has in general different traces on each face ofΣn and we denote by

[[Ψ̃ ]]Σn
:= Ψ̃ |Σ−

n
−Ψ̃ |Σ+

n

the jump ofΨ̃ throughΣn alongnnnn. The gradient of̃Ψ in D ′(Ω̃D) can be extended to L2(ΩD)
3 and will

be denoted bỹgradΨ̃ .
Let Θ be the linear subspace of H1(Ω̃D) defined by

Θ :=
{

Ψ̃ ∈ H1(Ω̃D) : [[Ψ̃ ]]Σn
= constant, n = 1, . . . ,L

}
.

Then, forΨ̃ ∈ H1(Ω̃D), we have thatg̃radΨ̃ ∈ H(curl;ΩD) if and only if Ψ̃ ∈ Θ , in which case
curl(g̃radΨ̃) = 000 (see (Amroucheet al., 1998, Lemma 3.11)).

We use the following notation: givenGGGC ∈ L2(ΩC)
3 andGGGD ∈ L2(ΩD)

3, (GGGC|GGGD) denotes the field
GGG∈ L2(Ω)3 defined byGGG|ΩC

:= GGGC andGGG|ΩD
:= GGGD.

Let us denote byY the linear space given by

Y :=
{
(GGG,Ψ̃) ∈ H(curl;ΩC)× (Θ/R) : (GGG| g̃radΨ̃) ∈ H(curl;Ω)

}
.

Then(GGG,Ψ̃) ∈ Y if and only if (GGG| g̃radΨ̃) ∈ X .
When a magnetic potential̃Ψ ∈ H1(Ω̃D) is used, boundary condition (3.4) can be imposed by fixing

its jumps on the cut surfaces. Indeed, if(GGG,Ψ̃) ∈ Y is smooth enough for the following integrals to
make sense, we have that

〈curlGGG·nnn,1〉Γ n
J

=
∫

Γ n
J

curlGGG·nnn =
∫

γn

GGG· tttn =
∫

γn

g̃radΨ̃ · tttn = [[Ψ̃ ]]Σn
, (3.7)

where we have used Stokes Theorem and the fact thatGGG×nnn = g̃radΨ̃ ×nnn onΓI ⊃ γn.
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Therefore, problem (3.4)–(3.6) reduces to find(HHH,Φ̃) : [0,T] → Y such that

[[Φ̃(t)]]Σn
= In(t), n = 1, . . . ,N, (3.8)

∫

ΩC

µ ∂tHHH(t) ·GGG+
∫

ΩD

µ ∂t g̃radΦ̃(t) · g̃radΨ̃ +
∫

ΩC

1
σ

curlHHH(t) · curlGGG = 0 ∀(GGG,Ψ̃) ∈ Y
0, (3.9)

(HHH(0)| g̃radΦ̃(0)) = HHH0, (3.10)

where
Y

0 :=
{
(GGG,Ψ̃) ∈ Y : [[Ψ̃ ]]Σn

= 0, n = 1, . . . ,N
}

.

3.2 Existence and uniqueness of the solution

In this section we will prove the existence and uniqueness ofthe solution to the transient eddy cur-
rent problem (3.4)–(3.6). With this aim, we introduce an adequate functional framework for functions
defined on a bounded time interval[0,T] and with values in a separable Hilbert spaceX. We use
the notationC 0([0,T];X) for the Banach space consisting of all continuous functionsf : [0,T] → X.
More generally, for anyk ∈ N, C k([0,T];X) denotes the subspace ofC 0([0,T];X) of all functions f

with (strong)
d j f
dt j derivatives inC 0([0,T];X) for all 1 6 j 6 k. We will use indistinctly the notations

d f
dt

= ∂t f to express the derivative with respect to the variablet. We also consider the spaces L2(0,T;X)

of classes of functionsf : [0,T] → X that are B̈ochner-measurable and such that

‖ f‖L2(0,T;X) :=

(∫ T

0
‖ f (t)‖2

X dt

)1/2

< ∞.

Furthermore, we will use the space

H1(0,T;X) := { f ∈ L2(0,T;X) : ∂t f ∈ L2(0,T;X)}.

Analogously, we define Hk(0,T;X) for all k∈ N.
On the other hand, we denote byHV the closure ofV in L2(Ω)3 and byV

′ the dual space ofV
with respect to the pivot spaceHV with measureµ(xxx)dxxx (which is topologically equivalent to L2(Ω)3

with the standard Lebesgue measure). Hence, forFFF ∈ HV we have

〈FFF ,GGG〉V ′×V =

∫

Ω
µFFF ·GGG ∀GGG∈ V .

Thus, problem (3.4)–(3.6) can be rewritten as follows:

Problem 3.1 FindHHH ∈ L2(0,T;X )∩H1(0,T;V ′) such that

〈curlHHH(t) ·nnn,1〉Γ n
J

= In(t), n = 1, . . . ,N, (3.11)

〈∂tHHH(t),GGG〉V ′×V +a(HHH(t),GGG) = 0 ∀GGG∈ V , (3.12)

HHH(0) = HHH0. (3.13)

The bilinear forma is defined overX ×X by

a(KKK,GGG) :=
∫

ΩC

1
σ

curlKKK · curlGGG.
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It is continuous and satisfies the following Gårding’s inequality: for eachλ > 0 there existsα > 0 such
that

a(GGG,GGG)+λ‖GGG‖2
L2(Ω)3 > α‖GGG‖2

H(curl;Ω) ∀GGG∈ X . (3.14)

For the initial data we assume that

HHH0 ∈ X and 〈curlHHH0 ·nnn,1〉Γ n
J

= In(0), n = 1, . . . ,N. (3.15)

The reason for this assumption will be made clear below.
The next step is to write an equivalent form of Problem 3.1 more amenable for the analysis. The

first goal is to buildĤHH ∈ H1(0,T;X ) satisfying (3.11). With this aim we will use the unique solutions
wn ∈ H1(Ω n

C
), n = 1, . . . ,N, of the following problems:

−∆wn = 0 in Ω n
C
,

∂wn

∂n
=





In(0)

|Γ n
J
| on Γ n

J
,

0 on ∂Ω n
C
∩ΓI,

wn = 0 onΓ n
E

.

(3.16)

Straightforward computations allow us to show that‖wn‖H1(Ωn
C
) 6 C|In(0)|.

Let QQQ∈ L2(Ω)3 be defined by

QQQ :=





∇wn in Ω n
C
, n = 1, . . . ,N,

000 in ΩD,
000 in Ω n

C
, n = N+1, . . . ,M.

Since div(∇wn) = 0 in Ω n
C

and∇wn ·nnn= 0 onΓI ∩∂Ω n
C
, QQQ∈ H(div,Ω) and divQQQ= 0 in Ω . Then, since

∂Ω is connected, there exists a vector potentialĤHH0 ∈ H1(Ω)3 such that

curl ĤHH0 = QQQ (3.17)

and divĤHH0 = 0 (see (Girault & Raviart, 1986, Theorem I.3.4)). Moreover,as a consequence of the open
mapping theorem, we obtain

‖ĤHH0‖H1(Ω)3 6 C‖QQQ‖L2(Ω)3 6 C

(
N

∑
n=1

|In(0)|2
)1/2

; (3.18)

here and thereafterC denotes a generic constant not necessarily the same at each occurrence.
Similarly, letvn : [0,T] → H1(Ω n

C
) be the unique solution of

−∆vn(t) = 0 in Ω n
C
,

∂vn

∂n
(t) =





I ′n(t)
|Γ n

J
| on Γ n

J
,

0 on ∂Ω n
C
∩ΓI,

vn(t) = 0 onΓ n
E

.

(3.19)
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Then, as above,‖vn(t)‖H1(Ωn
C
) 6 C|I ′n(t)|. (Recall that we have assumedIn ∈ H1(0,T).)

We repeat the procedure above and definePPP(t) ∈ L2(Ω)3 by PPP(t) := ∇vn(t) in Ω n
C
, n = 1, . . . ,N,

extended by zero to the wholeΩ . Once morePPP(t) ∈ H(div,Ω) with divPPP(t) = 0. Then, there exists a
vector potentialFFF(t) ∈ H1(Ω)3 such that

curlFFF(t) = PPP(t), (3.20)

divFFF(t) = 0 and

‖FFF(t)‖H1(Ω)3 6 C‖PPP(t)‖L2(Ω)3 6 C

(
N

∑
n=1

|I ′n(t)|2
)1/2

. (3.21)

FunctionFFF is Böchner-integrable (i.e., it is B̈ochner-measurable and the real-valued function‖FFF(t)‖X :
[0,T] → R has a finite Lebesgue integral). Indeed, using the Cauchy-Schwartz inequality we obtain

∫ T

0
‖FFF(s)‖X ds6 C

(
N

∑
n=1

∫ T

0
|I ′n(s)|2ds

)1/2

< ∞,

sinceIn ∈ H1(0,T), n = 1, . . . ,N. Therefore, if we define

ĤHH(t) := ĤHH0 +
∫ t

0
FFF(s)ds, (3.22)

then it follows that (see (̌Zeńıšek, 1990, Remark 131(b))) a.e. in[0,T] and in the distributional sense

∂tĤHH(t) = FFF(t).

On the other hand, from (3.21) we have
∫ T

0
‖∂tĤHH(t)‖2

X dt =
∫ T

0
‖FFF(t)‖2

X dt 6 C
N

∑
n=1

∫ T

0
|I ′n(t)|2dt < ∞.

Straightforward computations yield
∫ T

0 ‖ĤHH(t)‖2
X

dt < ∞ too, so that we conclude thatĤHH ∈H1(0,T;X );
furthermore, from (3.17), (3.20) and (Žeńıšek, 1990, Theorem 111 & 127) we have that

curl ĤHH(t) = QQQ+
∫ t

0
PPP(s)ds.

Consequently, forn = 1, . . . ,N,
∫

Γ n
J

curl ĤHH(t) ·nnn =
∫

Γ n
J

QQQ·nnn+
∫

Γ n
J

∫ t

0
PPP(s) ·nnnds=

∫

Γ n
J

∂wn

∂n
+
∫

Γ n
J

∫ t

0

∂vn

∂n
(s)ds

= In(0)+
∫ t

0
I ′n(s)ds= In(t).

Now, if we writeHHH = H̃HH +ĤHH, then Problem 3.1 is equivalent to finding̃HHH ∈L2(0,T;V )∩H1(0,T;V ′)
such that

〈∂tH̃HH(t),GGG〉V ′×V +a(H̃HH(t),GGG) = 〈 f (t),GGG〉V ′×V ∀GGG∈ V , (3.23)

H̃HH(0) = HHH0− ĤHH0, (3.24)
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where f : [0,T] → V
′ is defined by

〈 f (t),GGG〉V ′×V := −
∫

Ω
µ∂tĤHH(t) ·GGG−

∫

ΩC

1
σ

curl ĤHH(t) · curlGGG ∀GGG∈ V . (3.25)

Notice that from (3.18) and (3.21)

‖ f (t)‖2
V

′ 6 C

{
N

∑
n=1

|In(0)|2 +
N

∑
n=1

|I ′n(t)|2 +
N

∑
n=1

∫ t

0
|I ′n(s)|2ds

}
(3.26)

and hencef ∈ L2(0,T;V ′).
Regarding the initial condition, sinceHV is the closure ofV in L2(Ω)3, we have that L2(0,T;V )∩

H1(0,T;V ′) →֒ C 0([0,T];HV ) (see (Dautray & Lions, 1992, Chapter XVIII)) and consequently HHH0−
ĤHH0 has to belong toHV . This is fulfilled in our case since, because of assumption (3.15),HHH0− ĤHH0 ∈
V ⊂ HV .

Now, we are in a position to prove the following result:

THEOREM 3.2 GivenIn ∈ H1(0,T), n = 1, . . . ,N, andHHH0 satisfying (3.15), Problem 3.1 has a unique
solutionHHH. Furthermore, there existsC > 0 such that

‖HHH‖2
C 0(0,T;L2(Ω)3) +‖HHH‖2

L2(0,T;X ) 6 C

{
‖HHH0‖2

L2(Ω)3 +
N

∑
n=1

‖In‖2
H1(0,T)

}
.

Proof. Let ĤHH0 andĤHH(t) be defined as above. SincẽHHH(0) ∈ HV , a(·, ·) is a continuous bilinear form
satisfying the G̊arding inequality (3.14), andf ∈ L2(0,T;V ′) (cf. (3.26)), by applying Lions Theorem
(see Dautray & Lions (1992)) problem (3.23)–(3.24) has a unique solutionH̃HH and there existsC > 0
such that

max
t∈[0,T]

‖H̃HH(t)‖2
L2(Ω)3 +

∫ T

0
‖H̃HH(t)‖2

H(curl;Ω) dt 6 C
{
‖HHH0− ĤHH0‖2

L2(Ω)3 +‖ f‖2
L2(0,T;V ′)

}
.

Therefore, Problem 3.1 has a unique solutionHHH = H̃HH + ĤHH and

max
t∈[0,T]

‖HHH(t)‖2
L2(Ω)3 +

∫ T

0
‖HHH(t)‖2

H(curl;Ω) dt 6 C

{
‖HHH0‖2

L2(Ω)3 +
N

∑
n=1

|In(0)|2 +
N

∑
n=1

∫ T

0
|I ′n(s)|2ds

}
.

Thus we conclude the theorem. �

3.3 Additional regularity

Our next goal is to show that the solution of Problem 3.1 satisfies somehow equations (2.1)–(2.8). First,
we will show an additional regularity result for this kind ofevolution problems.

We consider two real, separable Hilbert spacesX andH. Moreover, we suppose thatX is dense in
H, so that, by identifyingH with its dualH ′, we haveX →֒ H →֒ X′, both inclusions being dense.

Given u0 ∈ H and g ∈ L2(0,T;X′) we consider the following problem: Findu ∈ L2(0,T;X)∩
H1(0,T;X′) such that

〈∂tu(t),v〉X′×X +c(u(t),v) = 〈g(t),v〉X′×X ∀v∈ X, (3.27)

u(0) = u0, (3.28)
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wherec : X×X →R is bilinear, bounded and elliptic. We know that problem (3.27)–(3.28) has a unique
solution (see Dautray & Lions (1992)). Moreover, we have thefollowing additional regularity result.

LEMMA 3.1 If u0 ∈ X, g ∈ H1(0,T;X′) and u is the solution of problem (3.27)–(3.28), thenu ∈
L∞(0,T;X) and∂tu∈ L2(0,T;H).

Proof. The proof follows the line of that of Theorem 5 from (Evans, 1998, Chapter 7) by using
a Galerkin approximation method (see Dautray & Lions (1992)). Let {Xm}m∈N be a family of finite
dimensional vector spaces satisfying

Xm ⊆ X, dimXm < ∞, Xm → X asm→ ∞;

the convergence above must be understood in the following sense: there exists a dense subspaceU of
X, such that, for allv∈ U , we can find a sequence{vm}m∈N, vm ∈ Xm such thatvm → v in X asm→ ∞.

Therefore, foru0 ∈ X let {u0m}m∈N, u0m ∈ Xm be such thatu0m → u0 in X asm→ ∞. Let {w j} j∈N

be such that{w j}m
j=1 in a basis ofXm.

Consider the following problem: Findum(t) :=
m

∑
j=1

ξ j(t)w j satisfying

(∂tum(t),w j)H +c(um(t),w j) = 〈g(t),w j〉X′×X, 1 6 j 6 m, (3.29)

um(0) = u0m. (3.30)

We know that there exists a subsequence of{um}m∈N, that we also denote{um}m∈N, such that

um → u weakly in L2(0,T;X), ∂tum → ∂tu weakly in L2(0,T;X′).

For fixedm> 1, we multiply (3.29) byξ ′
j(t) and sum fromj = 1 tom, to obtain

‖∂tum(t)‖2
H +

1
2

d
dt

c(um(t),um(t)) =
d
dt
〈g(t),um(t)〉X′×X −〈∂tg(t),um(t)〉X′×X.

Integrating overt and using Cauchy-Schwartz inequality yield
∫ t

0
‖∂tum(s)‖2

H ds+‖um(t)‖2
X 6 C

{
‖um(0)‖2

X + sup
06t6T

‖g(t)‖2
X′ +

∫ T

0
‖∂tg(t)‖2

X′ dt+
∫ t

0
‖um(s)‖2

X ds

}
.

Using Gronwall’s inequality, we obtain

‖um(t)‖2
X 6 C

{
‖u0m‖2

X + sup
06t6T

‖g(t)‖2
X′ +

∫ T

0
‖∂tg(t)‖2

X′ dt

}
.

Therefore
∫ T

0
‖∂tum(t)‖2

H dt+ sup
06t6T

‖um(t)‖2
X 6 C

{
‖u0m‖2

X + sup
06t6T

‖g(t)‖2
X′ +‖∂tg‖2

L2(0,T;X′)

}

and passing to the limit asm→ ∞, we deduce thatu∈ L∞(0,T;X) and∂tu∈ L2(0,T;H). �

The previous lemma is also valid for any bilinear form that satisfies a G̊arding inequality like (3.14).
In fact, if we writeu = weλ t , λ > 0, thenw satisfies

〈∂tw(t),v〉X′×X + c̃(w(t),v) = 〈e−λ tg(t),v〉X′×X ∀v∈ X,

w(0) = u0,
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wherec̃(w(t),v) := c(w(t),v)+λ (w(t),v)H is bilinear, bounded and elliptic.
In what follows we will also use the closure ofX in L2(Ω)3, which we denoteHX . We have the

following characterization of this space.

LEMMA 3.2
HX =

{
GGG∈ L2(Ω)3 : curlGGG = 000 in ΩD

}
.

Proof. Given that{GGG∈ L2(Ω)3 : curlGGG = 000 in ΩD} is a closed subspace of L2(Ω)3, it is enough to
prove thatX is densely included in this subspace.

Let GGG∈ L2(Ω)3 such thatcurlGGG = 000 in ΩD. Let G̃GG∈ H(curl;Ω) such that̃GGG = GGG in ΩD. Hence,
(GGG− G̃GG)|ΩC

∈ L2(ΩC)
3. Then, there exists{Φk}k∈N ⊂ D(ΩC)

3 such that‖Φk− (GGG− G̃GG)‖L2(ΩC)3 → 0

ask → ∞. If we denote byΦ̃k the extension by zero ofΦk to Ω , thenΦ̃k + G̃GG∈ X for all k ∈ N and
‖(Φ̃k + G̃GG)−GGG‖L2(Ω)3 → 0 ask→ ∞. �

In what follows, we will apply Lemma 3.1 to our problem. With this end, we will assume more
regularity on the input currents intensities, namely,In ∈ H2(0,T), n = 1, . . . ,N. In such a case we can
modify the definition (3.22) of̂HHH so that∂tHHH ∈ L2(0,T;H X ). Indeed, letun : [0,T] → H1(Ω n

C
) be the

unique solution of

−∆un(t) = 0 in Ω n
C
,

∂un(t)
∂n

=





I ′′n (t)
|Γ n

J
| on Γ n

J
,

0 on ∂Ω n
C
∩ΓI,

un(t) = 0 onΓ n
E

.

Proceeding as was done for problem (3.16), we obtain that‖un(t)‖H1(Ωn
C
) 6 C|I ′′n (t)|.

Let RRR(t) ∈ L2(Ω)3 be defined byRRR(t) := ∇un(t) in Ω n
C
, n = 1, . . . ,N, extended by zero to the whole

Ω . HenceRRR(t) ∈ H(div,Ω) with divRRR(t) = 0 and there exists a vector potentialKKK(t) ∈ H1(Ω)3 such
that

curlKKK(t) = RRR(t), (3.31)

divKKK(t) = 0 and

‖KKK(t)‖H1(Ω)3 6 C‖RRR(t)‖L2(Ω)3 6 C

(
N

∑
n=1

|I ′′n (t)|2
)1/2

. (3.32)

Now, if instead ofĤHH as defined in (3.22) we use

ĤHH(t) := ĤHH0 + t FFF(0)+
∫ t

0

(∫ s

0
KKK(r)dr

)
ds, (3.33)

thenĤHH ∈ H1(0,T;X ) and, from (3.17), (3.20) and (3.31), we have that

curl ĤHH(t) = QQQ+ t PPP(0)+
∫ t

0

(∫ s

0
RRR(r)dr

)
ds. (3.34)
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Hence,
∫

Γ n
J

curl ĤHH(t) ·nnn = In(t), n = 1, . . . ,N.

To apply Lemma 3.1 to our problem we takef : [0,T] → V
′ defined as in (3.25) witĥHHH given by

(3.33). ForIn ∈ H2(0,T), n= 1, . . . ,N, we have thatf ∈ H1(0,T;V ′). In fact,∂t f : [0,T]→ V
′ is given

by

〈∂t f (t),GGG〉V ′×V := −
∫

Ω
µ∂ttĤHH(t) ·GGG−

∫

ΩC

1
σ

∂t(curl ĤHH(t)) · curlGGG.

Since,∂ttĤHH(t) = KKK(t) (cf. (3.33)) and∂t(curl ĤHH(t)) = PPP(0)+
∫ t

0 KKK(s)ds (cf. (3.34)), thanks to (3.21)
and (3.32) we have

‖∂t f (t)‖2
V

′ 6 C

{
N

∑
n=1

|I ′n(0)|2 +
N

∑
n=1

|I ′′n (t)|2 +
N

∑
n=1

∫ t

0
|I ′′n (s)|2ds

}

and, consequently,f ∈H1(0,T;V ′), which allows us to use Lemma 3.1 to conclude the following result:

THEOREM 3.3 GivenIn ∈ H2(0,T), n = 1, . . . ,N, andHHH0 satisfying (3.15), the unique solutionHHH of
Problem 3.1 satisfiesHHH ∈ L∞(0,T;H X ) and∂tHHH ∈ L2(0,T;HX ).

Proof. Let HHH be the solution of Problem 3.1. Let̂HHH be defined by (3.33). Let̃HHH := HHH − ĤHH. ThenH̃HH
satisfies (3.23)–(3.24) withf given by (3.25). From the assumptions onHHH0 and the definition of̂HHH0

we have thatHHH0− ĤHH0 ∈ V . Moreover, as was shown above,f ∈ H1(0,T;V ′). Hence, we can apply
Lemma 3.1 to conclude that̃HHH ∈ L∞(0,T;V ) and∂tH̃HH ∈ L2(0,T;HV ). Thus the theorem follows from
the fact that̂HHH ∈ H1(0,T;X ), which was also shown above. �

Let X
′ be the dual space ofX with respect to the pivot spaceHX with measureµ(xxx)dxxx. In

order to prove that the solution of Problem 3.1 satisfies equations (2.1)–(2.8) we introduce the following
mixed formulation:

Find (HHH,~V) ∈ L2(0,T;X )∩H1(0,T;X ′)×L2(0,T;RN) such that

〈∂tHHH(t),GGG〉X ′×X +a(HHH(t),GGG)+b(GGG,~V(t)) = 0 ∀GGG∈ X , (3.35)

b(HHH(t), ~W) =
N

∑
n=1

IIIn(t)Wn ∀~W = (W1, . . . ,WN) ∈ R
N, (3.36)

HHH(0) = HHH0, (3.37)

whereb : X ×R
N → R is the bilinear form defined by

b(GGG, ~W) :=
N

∑
n=1

Wn〈curlGGG·nnn,1〉Γ n
J

.

Next we prove that (3.35)–(3.37) is actually equivalent to Problem 3.1.

LEMMA 3.3 Given In ∈ H2(0,T), n = 1, . . . ,N, and HHH0 satisfying (3.15), letHHH be the solution of
Problem 3.1. Then there exists~V ∈ L2(0,T;RN) such that(HHH,~V) is the unique solution of (3.35)–
(3.37).

Proof. Let HHH be the solution of Problem 3.1. ForIn ∈ H2(0,T), n = 1, . . . ,N, because of Theorem 3.3
∂tHHH ∈ L2(0,T;HX ) ⊂ L2(0,T;X ′). Hence, we can defineh : [0,T] → X

′ by

〈h(t),GGG〉X ′×X := −〈∂tHHH(t),GGG〉X ′×X −a(HHH(t),GGG), GGG∈ X
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and we have thath∈ L2(0,T;X ′). On the other hand it was proved in Bermúdezet al.(2005b) (see the
proof of Theorem 7) thatb satisfies the followinginf-supcondition

sup
GGG∈X

b(GGG, ~W)

‖GGG‖H(curl;Ω)
> β |~W| ∀~W ∈ R

N.

Consequently, for eacht ∈ [0,T], there exists a unique~V(t)∈R
N such thatb(GGG,~V(t)) = 〈h(t),GGG〉X ′×X

∀GGG ∈ X (see (Girault & Raviart, 1986, Lemma 4.1)). Furthermore, since h ∈ L2(0,T;X ′), ~V ∈
L2(0,T;RN), and (3.35) holds true. Moreover, (3.36) and (3.37) followsdirectly from (3.11) and (3.13).
Hence,(HHH,~V) is a solution of (3.35)–(3.37). There only remains to prove that this problem has at most

one solution. With this aim consider(H̆HH,~̆V) a solution of (3.35)–(3.37) with dataIn = 0, n = 1, . . . ,N,

andHHH0 = 000. For eacht ∈ [0,T] we takeGGG = H̆HH(t) and~W = ~̆V(t) as test functions in (3.35) and (3.36),
respectively. Subtracting the resulting equations we obtain

〈∂tH̆HH(t), H̆HH(t)〉X ′×X +a(H̆HH(t), H̆HH(t)) = 0.

Sincea(H̆HH(t), H̆HH(t)) > 0, 〈∂tH̆HH(t), H̆HH(t)〉X ′×X = 1
2

d
dt‖H̆HH(t)‖2

X
andH̆HH(0) = 000, it follows thatH̆HH(t) = 000.

Finally we also havĕ~V(t) = 000 because of theinf-supcondition forb and (3.35). �

Now we are in a position to prove that the solution of (3.35)–(3.37), and consequently of Prob-
lem 3.1, satisfies equations (2.1)–(2.8).

THEOREM 3.4 Let In ∈ H2(0,T), n = 1, . . . ,N, andHHH0 satisfying (3.15) andµHHH0 ∈ H0(div0;Ω) (i.e.,
div(µHHH0) = 0 in Ω ). Let (HHH,~V) be the solution of (3.35)–(3.37). LetJJJ(t) := curlHHH(t) andEEE(t) :=(

1
σ JJJ(t)

)∣∣
ΩC

. Then the following properties hold true:

div(µHHH(t)) = 0 in Ω , (3.38)

µ∂tHHH(t)+ curlEEE(t) = 000 in ΩC, (3.39)

JJJ(t) = 000 in ΩD, (3.40)

〈curlHHH(t) ·nnn,1〉Γ n
J

= In(t), n = 1, . . . ,N, (3.41)

µHHH(t) ·nnn = 0 on∂Ω , (3.42)

EEE(t)×nnn = −∇V∗(t)×nnn in H−1/2
00 (ΓC)

3, (3.43)

where, in the last equation,V∗(t) ∈ H1(ΩC) is such thatV∗(t)|Γ n
J

= Vn(t), n = 1, . . . ,N, andV∗(t)|ΓE
= 0.

Hence, in particular,

EEE(t)×nnn = 000 onΓE and EEE(t)×nnn = 000 onΓ n
J

, n = 1, . . . ,N.

Proof. The proof follows the lines of that of Theorem 7 from Bermúdezet al.(2005b). Givenv∈D(Ω)
it follows that∇v∈ V . Then since according to Theorem 3.3∂tHHH ∈ L2(0,T;H X ), (3.35) yields

∫

Ω
µ∂tHHH(t) ·∇v = 0.

Hence, div(µ∂tHHH(t)) = 0 and consequently∂t(µ divHHH(t)) = 0 (see (̌Zeńıšek, 1990, Theorems 111 &
113)). Therefore, (3.38) follows from the fact that div(µHHH(0)) = 0.



NUMERICAL SOLUTION OF TRANSIENT EDDY CURRENT PROBLEMS 15 of 28

Now, letGGG∈ D(Ω)3 be such that suppGGG⊂ ΩC. ThenGGG∈ V too and (3.35) yields

∫

ΩC

µ∂tHHH(t) ·GGG+
∫

ΩC

1
σ

curlHHH(t) · curlGGG = 0.

Hence,EEE(t) :=
(

1
σ curlHHH(t)

)∣∣
ΩC

satisfies (3.39).

Equation (3.40) follows from the definition ofJJJ(t) and the fact thatHHH(t) ∈ X , whereas equation
(3.41) follows from (3.36).

To prove (3.42), notice thatµ∂tHHH(t)∈H(div,Ω) because of (3.38). Thenµ∂tHHH(t) ·nnn∈H−1/2(∂Ω).
Moreover, givenv∈ H1(Ω), we have

〈µ∂tHHH(t) ·nnn,v〉∂Ω =
∫

Ω
div(µ∂tHHH(t))v+

∫

Ω
µ∂tHHH(t) ·∇v = 0,

the last equality because of (3.38) and (3.35), since∇v ∈ V . Therefore∂t(µHHH(t)) = 0 in H1/2(∂Ω),
which together with the fact thatµHHH0 ·nnn = 0 on∂Ω leads to (3.42).

Finally, letV∗(t)∈H1(ΩC) be any function such thatV∗(t)|Γ n
J

=Vn(t), n= 1, . . . ,N, andV∗(t)|ΓE
= 0;

functions of this type clearly exist sinceΓJ∩ΓE = /0. On the other hand, notice thatEEE(t) ∈ H(curl;ΩC)

because of (3.39), and consequentlyEEE(t)×nnn∈ H−1/2(∂ΩC)
3. Hence, to prove (3.43), it is enough to

show that〈EEE(t)×nnn,vvv〉∂ΩC
= −〈∇V∗(t)×nnn,vvv〉∂ΩC

∀vvv∈ H1/2(∂ΩC)
3 with suppvvv⊂⊂ ΓC.

Given one suchvvv, notice that there existsGGG ∈ H1(Ω)3 vanishing inΩD and such thatGGG|∂ΩC
= vvv.

ThenGGG∈ X and, from (3.35), (3.39), Green’s formula, and the fact thatEEE(t) = 1
σ curlHHH(t) in ΩC, we

obtain

0 =
∫

Ω
µ∂tHHH(t) ·GGG+

∫

ΩC

EEE(t) · curlGGG+b(GGG,~V(t))

=
∫

ΩC

µ∂tHHH(t) ·GGG+
∫

ΩC

curlEEE(t) ·GGG+ 〈EEE(t)×nnn,GGG|∂ΩC
〉

∂ΩC

+b(GGG,~V(t))

= 〈EEE(t)×nnn,vvv〉∂ΩC
+ 〈∇V∗(t)×nnn,vvv〉∂ΩC

,

the last equality because of the fact that

b(GGG,~V(t)) = 〈curlGGG·nnn,V∗(t)|∂ΩC
〉

∂ΩC

=
∫

ΩC

curlGGG·∇V∗(t) = 〈∇V∗(t)×nnn,vvv〉∂ΩC
,

which in its turn follows from the definition ofb and Green’s formulas. Therefore, we conclude the
proof. �

4. Space discretization

We assume thatΩ , ΩC, andΩD are Lipschitz polyhedra and consider regular tetrahedral meshesTh

of Ω , such that each elementK ∈ Th is contained either inΩC or in ΩD (h stands as usual for the
corresponding mesh-size). We employ edge finite elements toapproximate the magnetic field, more
precisely, the lowest-order finite elements of the family introduced by Ńed́elec:

Nh(Ω) := {GGGh ∈ H(curl;Ω) : GGGh|K ∈ N (K) ∀K ∈ Th}.
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The field is approximated in each tetrahedronK by a polynomial vector field in the space

N (K) :=
{

GGGh ∈ P
3
1 : GGGh(xxx) = a×xxx+b, a,b ∈ R

3, xxx∈ K
}

.

We introduce

X h :={GGGh ∈ Nh(Ω) : curlGGGh = 000 in ΩD} ⊂ X ,

V h :=

{
GGGh ∈ X h(Ω) :

∫

Γ n
J

curlGGGh ·nnn = 0, n = 1, . . . ,N

}
⊂ V .

Then, the space-discretization of Problem 3.1 leads as follows:

Problem 4.1 Find HHHh : [0,T] → X h such that
∫

Γ n
J

curlHHHh(t) ·nnn = In(t), n = 1, . . . ,N, (4.1)

∫

Ω
µ∂tHHHh(t) ·GGGh +a(HHHh(t),GGGh) = 0 ∀GGGh ∈ V h, (4.2)

HHHh(0) = HHH0h, (4.3)

whereHHH0h ∈ X h is an approximation ofHHH0.

To prove that this problem is well posed, first we will use a function ĤHHh ∈ H1(0,T;X h) such that∫
Γ n
J

curl ĤHHh(t) ·nnn = In(t), n = 1, . . . ,N. Let

ĤHHh(t,xxx) := ∑
e∈E

ce(t)Ψe(xxx), (4.4)

where{Ψe}e∈E the nodal basis onX h (with E being the set of edges associated to the meshTh) and

ce(t) :=
In(t)
|e|Nn

,

with Nn being the number of edgese∈ E lying on γn. Hence,
∫

Γ n
J

curl ĤHHh(t) ·nnn =
∫

γn

ĤHHh(t) · tttn = ∑
e∈E :e⊆γn

ce(t)
∫

e
Ψe · tttn = In(t),

where for the last equality we have used that
∫

eΨe · tttn = |e|. SinceIn ∈ H1(0,T) n = 1, . . . ,N, we
conclude that̂HHHh ∈ H1(0,T;X h).

Now, if we writeHHHh = H̃HHh + ĤHHh, Problem 4.1 is equivalent to finding̃HHHh ∈ H1(0,T;V h) such that
∫

Ω
µ∂tH̃HHh(t) ·GGGh +a(H̃HHh(t),GGGh) = −

∫

Ω
µ∂tĤHHh(t) ·GGGh−a(ĤHHh(t),GGGh) ∀GGGh ∈ V h, (4.5)

H̃HHh(0) = HHH0h− ĤHHh(0). (4.6)

Next, let be a basis ofV h, {Φ i}K
i=1. We write

H̃HHh(t,xxx) =
K

∑
i=1

βi(t)Φ i(xxx).
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Let βββ (t) := (βi(t))16i6K andFFFh(t) := ( fhi (t))16i6K , with

fhi (t) = −
∫

Ω
µ∂tĤHHh(t) ·Φ i −a(ĤHHh(t),Φ i), 1 6 i 6 K,

and the matricesK ∈ R
K×K andK ∈ R

K×K given by

Ki, j := a(Φ i ,Φ j), Mi, j :=
∫

Ω
µΦ i ·Φ j , 1 6 i, j 6 K.

Then, problem (4.5)–(4.6) leads as follows: Findβ (t) ∈ R
K such that

M βββ ′(t) = −K βββ (t)+FFFh(t),

βββ (0) = βββ 0

sinceM is a positive definite symmetric matrix, this linear system of differential equations has a unique
solution. Thus, we conclude that Problem 4.1 admits a uniquesolution, too.

Our next goal is to obtain error estimates for the semi-discrete scheme of Problem 4.1. Forr ∈
(

1
2,1
]
,

let
X

r :=
{

GGG∈ X : GGG|ΩC
∈ Hr(curl,ΩC) andGGG|ΩD

∈ Hr(ΩD)
3
}

where Hr(curl,ΩC) :=
{

GGG∈ Hr(ΩC)
3 : curlGGG∈ Hr(ΩC)

3
}

. If GGG ∈ X
r , then its Ńed́elec interpolant

IhGGG∈ Nh(Ω) is well defined (see (Berḿudezet al., 2002, Lemma 5.1) and Amroucheet al. (1998)).
From now on, we assume that the solution of Problem 3.1 satisfiesHHH ∈ H1(0,T;X r), which in

particular implies that the initial conditionHHH0 ∈X
r . Therefore, the Ńed́elec interpolantIhHHH(t) is well

defined and satisfies
∫

Γ n
J

curlIhHHH(t) ·nnn =
∫

γn

IhHHH(t) · tn =
∫

γn

HHH(t) · tn = 〈curlHHH(t) ·nnn,1〉Γ n
J

= In(t).

Thus, we are allowed to useHHH0h := IhHHH0.
Let ρρρh(t) := HHH(t)−IhHHH(t) andδδδ h(t) := IhHHH(t)−HHHh(t). Notice that from the last equality we

have thatδδδ h(t) ∈ V h. A straightforward computation yields
∫

Ω
µ∂tδδδ h(t) ·GGGh +a(δδδ h(t),GGGh) = −

∫

Ω
µ∂tρρρh(t) ·GGGh−a(ρρρh(t),GGGh) ∀GGGh ∈ V h. (4.7)

By takingGGGh := δδδ h(t), using (3.14) and the Cauchy-Schwartz inequality, we obtain

∂t‖δδδ h(t)‖2
L2(Ω)3 +‖δδδ h(t)‖2

L2(Ω)3 6 C
{
‖∂tρρρh(t)‖2

L2(Ω)3 +‖curlρρρh(t)‖2
L2(Ω)3

}
. (4.8)

Using Gronwall’s inequality and the fact thatδδδ h(0) = 000 , we obtain

‖δδδ h(t)‖2
L2(Ω)3 6 C

{∫ T

0
‖∂tρρρh(t)‖2

L2(Ω)3 dt+
∫ T

0
‖curlρρρh(t)‖2

L2(Ω)3 dt

}
.

Integrating overt in (4.8), and using the last inequality, we obtain

‖δδδ h(t)‖2
L2(Ω)3 +

∫ t

0
‖δδδ h(s)‖2

L2(Ω)3 ds

6 C

{∫ T

0
‖∂tρρρh(t)‖2

L2(Ω)3 dt+
∫ T

0
‖curlρρρh(t)‖2

L2(Ω)3 dt

}
. (4.9)
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On the other hand, by takingGGGh := ∂tδδδ h(t) in (4.7) and using the fact that

d
dt

a(SSS(t),TTT(t)) = a(∂tSSS(t),TTT(t))+a(SSS(t),∂tTTT(t)),

we obtain that

µ ‖∂tδδδ h(t)‖2
L2(Ω)3 +

1
2

d
dt

a(δδδ h(t),δδδ h(t))

6 −
∫

Ω
µ∂tρρρh(t) ·∂tδδδ h(t)+a(∂tρρρh(t),δδδ h(t))−

d
dt

a(ρρρh(t),δδδ h(t)).

Integrating overt, since 1
σ ‖curlδδδ h(t)‖2

L2(Ω)3 6 a(δδδ h(t),δδδ h(t)), Cauchy-Schwartz inequality yields

∫ t

0
‖∂tδδδ h(s)‖2

L2(Ω)3 ds+‖curlδδδ h(t)‖2
L2(Ω)3

6 C

{∫ t

0
‖curlδδδ h(s)‖2

L2(Ω)3 ds+ sup
06t6T

‖curlρρρh(t)‖2
L2(Ω)3 +

∫ T

0
‖∂tρρρh(t)‖2

H(curl;Ω) dt

}
.

Using Gronwall’s inequality, we obtain
∫ t

0
‖∂tδδδ h(s)‖2

L2(Ω)3 ds+‖curlδδδ h(t)‖2
L2(Ω)3

6 C

{
sup

06t6T
‖curlρh(t)‖2

L2(Ω)3 +
∫ T

0
‖∂tρρρh(t)‖2

H(curl;Ω) dt

}
. (4.10)

Combining the equations (4.9) and (4.10), we obtain

sup
06t6T

‖δδδ h(t)‖2
H(curl;Ω) +

∫ T

0
‖∂tδδδ h(t)‖2

L2(Ω)3 dt

6 C

{∫ T

0
‖∂tρρρh(t)‖2

H(curl;Ω) dt+ sup
06t6T

‖curlρρρh(t)‖2
L2(Ω)3

}
. (4.11)

Now, we are in a position to prove the following error estimates.

THEOREM 4.2 Suppose that the solution of Problem 3.1 satisfiesHHH ∈ H1(0,T;X r) with r ∈
(

1
2,1
]
.

Then, there exists a constantC > 0 independent ofh such that the solution of Problem 4.1 satisfies

sup
06t6T

‖HHH(t)−HHHh(t)‖2
H(curl;Ω) +

∫ T

0
‖∂t(HHH(t)−HHHh(t))‖2

L2(Ω)3 dt

6 Ch2r
[∫ T

0

{
‖∂tHHH(t)‖2

Hr (curl,ΩC) +‖∂tHHH(t)‖2
Hr (ΩD)3

}
dt

+ sup
06t6T

{
‖HHH(t)‖2

Hr (curl,ΩC) +‖HHH(t)‖2
Hr (ΩD)3

}]
.

Proof. Notice that the regularity onHHH implies that∂t(IhHHH(t)) = Ih(∂tHHH(t)) for a.e. t ∈ [0,T] (see
Žeńıšek (1990)). Therefore (see Bermúdezet al. (2002)),

‖ρρρh(t)‖H(curl;Ω) 6 Chr
{
‖HHH(t)‖Hr (curl,ΩC) +‖HHH(t)‖Hr (ΩD)3

}
,

‖∂tρρρh(t)‖H(curl;Ω) 6 Chr
{
‖∂tHHH(t)‖Hr (curl,ΩC) +‖∂tHHH(t)‖Hr (ΩD)3

}
.
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Thus, the result follows by writingHHH(t)−HHHh(t) = ρρρh(t)+δδδ h(t) and using the estimates (4.11). �

For the implementation of Problem 4.1, we resort to its formulation in terms of a magnetic po-
tential. With this aim, we assume that the cut surfacesΣn are polyhedral and the meshes are com-
patible with them, in the sense that eachΣn is a union of faces of tetrahedraK ∈ Th. Therefore,

T
ΩD

h := {K ∈ Th : K ⊂ ΩD} can also be seen as a mesh ofΩ̃D.
We introduce an approximation of the spaceΘ . Let

Lh(Ω̃D) :=
{

Ψ̃h ∈ H1(Ω̃D) : Ψ̃h|K ∈ P1(K) ∀K ∈ T
ΩD

h

}

and consider the finite-dimensional subspace ofΘ given by

Θh :=
{

Ψ̃h ∈ Lh(Ω̃D) : [[Ψ̃h]]Σn
= constant, n = 1, . . . ,L

}
.

We introduce the following finite-dimensional subsets ofY andY
0, respectively,

Y h :=
{
(GGGh,Ψ̃h) ∈ N h(ΩC)× (Θh/R) : (GGGh| g̃radΨ̃h) ∈ H(curl;Ω)

}
,

Y
0
h :=

{
(GGGh,Ψ̃h) ∈ Y h : [[Ψ̃h]]Σn

= 0, n = 1, . . . ,N
}

.

Proceeding as in Berḿudezet al. (2005b) it is immediate to show that Problem 4.1 is equivalent to
finding (HHHh,Φ̃h) : [0,T] → Y h such that

[[Φ̃h(t)]]Σn
= In(t), n = 1, . . . ,N, (4.12)

∫

ΩC

µ ∂tHHHh(t) ·GGGh +
∫

ΩC

1
σ

curlHHHh(t) · curlGGGh +
∫

ΩD

µ ∂t g̃radΦ̃h(t) · g̃radΨ̃h = 0 ∀(GGGh,Ψ̃h) ∈ Y
0
h,

(4.13)

(HHHh(0)|Φ̃h(0)) = IhHHH0. (4.14)

Let us remark that the first equation above is actually equivalent to (4.1) becauseHHHh(t) andΦ̃h(t) are
smooth enough for (3.7) to hold. The above problem can be seenas a discretization of the magnetic
field - magnetic potential formulation (3.8)–(3.10).

5. Time discretization

We consider a uniform partition of[0,T], tk := k∆ t, k = 0, . . . ,M, with time step∆ t := T
M . A fully

discrete approximation of Problem 3.1 is defined as follows:

Problem 5.1 FindHHHm
h ∈ X h, m= 1, . . . ,M, such that

∫

Γ n
J

curlHHHm
h ·nnn = In(tm), n = 1, . . . ,N,

∫

Ω
µ

HHHm
h −HHHm−1

h

∆ t
·GGGh +a(HHHm

h ,GGGh) = 0 ∀GGGh ∈ V h

HHH0
h = IhHHH0.
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Hence, at each iteration step we have to findHHHm
h ∈ X h such that

∫

Γ n
J

curlHHHm
h ·nnn = In(tm), n = 1, . . . ,N,

∫

Ω
µHHHm

h ·GGGh +∆ t a(HHHm
h ,GGGh) =

∫

Ω
µHHHm−1

h ·GGGh ∀GGGh ∈ V h.

The problem above has a unique solution. In fact, takingt = tm in (4.4) and writingHHHm
h = H̃HH

m
h + ĤHH

m
h ,

we have to find̃HHH
m
h ∈ V h such that

∫

Ω
µH̃HH

m
h ·GGGh +∆ t a(H̃HH

m
h ,GGGh) =

∫

Ω
µH̃HH

m−1
h ·GGGh +

∫

Ω
µĤHH

m−1
h ·GGGh−

∫

Ω
µĤHH

m
h ·GGGh−∆ t a(ĤHH

m
h ,GGGh)

for all GGGh ∈ V h, which is a linear system of equations with a positive definite symmetric matrix.
Our next goal is to obtain error estimates for this fully-discrete scheme. Letρρρk := HHH(tk)−IhHHH(tk),

δδδ k := IhHHH(tk)−HHHk
h and τττk := HHH(tk)−HHH(tk−1)

∆ t − ∂tHHH(tk). A straightforward computation allows us to
show that

∫

Ω
µ

δδδ k−δδδ k−1

∆ t
·GGGh +a(δδδ k,GGGh) =

∫

Ω
µτττk ·GGGh−

∫

Ω
µ

ρρρk−ρρρk−1

∆ t
·GGGh−a(ρρρk,GGGh) GGGh ∈ V h. (5.1)

ChoosingGGGh := δδδ k and using that

∫

Ω

δδδ k−δδδ k−1

∆ t
·δδδ k

>
1

2∆ t

{
‖δδδ k‖2

L2(Ω)3 −‖δδδ k−1‖2
L2(Ω)3

}

anda(δδδ k,δδδ k) > 1
σ ‖curlδδδ k‖2

L2(Ω)3, together with the Cauchy-Schwartz inequality, yield

‖δδδ k‖2
L2(Ω)3 −‖δδδ k−1‖2

L2(Ω)3 +∆ t‖curlδδδ k‖2
L2(Ω)3

6
∆ t
2T

‖δδδ k‖2
L2(Ω)3 +C∆ t

{∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

L2(Ω)3
+‖curlρρρk‖2

L2(Ω)3 +‖τττk‖2
L2(Ω)3

}
. (5.2)

In particular

‖δδδ k‖2
L2(Ω)3 −‖δδδ k−1‖2

L2(Ω)3

6
∆ t
2T

‖δδδ k‖2
L2(Ω)3 +C∆ t

{∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

L2(Ω)3
+‖curlρρρk‖2

L2(Ω)3 +‖τττk‖2
L2(Ω)3

}
.

Using the discrete Gronwall’s inequality in the last inequality, the fact thatδδδ 0 = 000 and summing overk
in (5.2), we obtain

‖δδδ m‖2
L2(Ω)3 +∆ t

m

∑
k=1

‖curlδδδ k‖2
L2(Ω)3

6 C∆ t
m

∑
k=1

{∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

L2(Ω)3
+‖curlρρρk‖2

L2(Ω)3 +‖τττk‖2
L2(Ω)3

}
. (5.3)
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On the other hand, by takingGGGh := δδδ k−δδδ k−1

∆ t in (5.1) and using that

a

(
δδδ k,

δδδ k−δδδ k−1

∆ t

)
>

1
2∆ t

{
a(δδδ k,δδδ k)−a(δδδ k−1,δδδ k−1)

}

and

a

(
ρρρk,

δδδ k−δδδ k−1

∆ t

)
=

1
∆ t

{
a(ρρρk,δδδ k)−a(ρρρk−1,δδδ k−1)

}
−a

(
ρρρk−ρρρk−1

∆ t
,δδδ k−1

)
,

together with the Cauchy-Schwartz inequality, we obtain

∆ t

∥∥∥∥∥
δδδ k−δδδ k−1

∆ t

∥∥∥∥∥

2

L2(Ω)3

+a(δδδ k,δδδ k)−a(δδδ k−1,δδδ k−1)

6 C∆ t

{
‖τττk‖2

L2(Ω)3 +

∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

H(curl;Ω)

+‖curlδδδ k−1‖2
L2(Ω)3

}
−2
{

a(ρρρk,δδδ k)+a(ρρρk−1,δδδ k−1)
}

.

Summing overk leads to

∆ t
m

∑
k=1

∥∥∥∥∥
δδδ k−δδδ k−1

∆ t

∥∥∥∥∥

2

L2(Ω)3

+‖curlδδδ m‖2
L2(Ω)3

6 C∆ t
m

∑
k=1

{∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

H(curl;Ω)

+‖curlδδδ k‖2
L2(Ω)3 +‖τττk‖2

L2(Ω)3

}
.

Adding this inequality to (5.3) and using again (5.3) to estimate∆ t
m

∑
k=1

‖curlδδδ k‖2
L2(Ω)3, we obtain

‖δδδ m‖2
H(curl;Ω) +∆ t

m

∑
k=1

‖curlδδδ k‖2
L2(Ω)3 +∆ t

m

∑
k=1

∥∥∥∥∥
δδδ k−δδδ k−1

∆ t

∥∥∥∥∥

2

L2(Ω)3

6 C∆ t
m

∑
k=1

{∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

H(curl;Ω)

+‖τττk‖2
L2(Ω)3 +‖curlρk‖2

L2(Ω)3

}
.

Therefore, we are in position to write the main result of thispaper which involves error estimates
for the physical quantities of interest, the magnetic fieldHHH and the current densityJJJ = curlHHH.

THEOREM 5.2 Let HHH be the solution of Problem 3.1 andHHHk
h, k = 1, . . . ,M, that of Problem 5.1. If

HHH ∈ H1(0,T;X r)∩H2(0,T;L2(Ω)3), with r ∈
(

1
2,1
]
, then there exists a constantC > 0, independent

of h and∆ t, such that

max
16k6M

‖HHH(tk)−HHHk
h‖2

H(curl;Ω) +∆ t
M

∑
k=1

∥∥∥∥∥∂tHHH(tk)−
HHHk

h−HHHk−1
h

∆ t

∥∥∥∥∥

2

L2(Ω)3

6 C

{
(∆ t)2‖HHH‖2

H2(0,T;L2(Ω)3) +h2r sup
06t6T

[
‖HHH(t)‖2

Hr (curl,ΩC) +‖HHH(t)‖2
Hr (ΩD)3

]

+h2r
∫ T

0

[
‖∂tHHH(t)‖2

Hr (curl,ΩC) +‖∂tHHH(t)‖2
Hr (ΩD)3

]
dt

}
.
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Proof. A Taylor expansion shows that

M

∑
k=1

‖τττk‖2
L2(Ω)3 =

M

∑
k=1

∥∥∥∥
1

∆ t

∫ tk

tk−1

(tk−s)∂ttHHH(s)ds

∥∥∥∥
2

L2(Ω)3
6 ∆ t

∫ T

0
‖∂ttHHH(t)‖2

L2(Ω)3 dt.

Moreover,
M

∑
k=1

∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

H(curl;Ω)

6
1

∆ t

∫ T

0
‖∂tρρρh(t)‖2

H(curl;Ω) dt.

Let eeek := HHH(tk)−HHHk
h = ρρρk +δδδ k. Using the estimates forδδδ k and the fact that

∂tHHH(tk)−
HHHk

h−HHHk−1
h

∆ t
=

ρρρk−ρρρk−1

∆ t
+

δδδ k−δδδ k−1

∆ t
− τττk

we obtain

‖eeem‖2
H(curl;Ω) +∆ t

m

∑
k=1

∥∥∥∥∥∂tHHH(tk)−
HHHk

h−HHHk−1
h

∆ t

∥∥∥∥∥

2

L2(Ω)3

6 C

{
‖ρρρm‖2

H(curl;Ω) +∆ t
m

∑
k=1

‖τττk‖2
L2(Ω)3 +∆ t

m

∑
k=1

∥∥∥∥
ρρρk−ρρρk−1

∆ t

∥∥∥∥
2

H(curl;Ω)

+∆ t
m

∑
k=1

‖curlρk‖2
L2(Ω)3

}

6 C

{
(∆ t)2

∫ T

0
‖∂ttHHH(t)‖2

L2(Ω)3 dt+
∫ T

0
‖∂tρρρh(t)‖2

H(curl;Ω) dt+ max
06m6M

‖ρρρh(tm)‖2
H(curl;Ω)

}
.

Thus, sinceρρρh := HHH −IhHHH, the result follows from the assumed regularity ofHHH and standard error
estimates for the Ńed́elec interpolant. �

For the actual computation of Problem 5.1 we proceed as in thesemidiscrete problem and rewrite it

in terms of a magnetic potential: Find
(

HHHm
h ,Φ̃m

h

)
∈ Y h, m= 1, . . . ,M, such that

[[Φ̃m
h ]]Σn

= In(tm), n = 1, . . . ,N,

∫

ΩC

µ
HHHm

h −HHHm−1
h

∆ t
·GGGh +

∫

ΩC

1
σ

curlHHHm
h · curlGGGh +

∫

ΩD

µ
g̃radΦ̃m

h − g̃radΦ̃m−1
h

∆ t
· g̃radΨ̃h = 0

∀(GGGh,Ψ̃h) ∈ Y
0
h,(

HHH0
h|Φ̃0

h

)
= IhHHH0.

Notice that the problem above can be seen as a backward Euler time discretization of (4.12)–(4.14).
This is the discrete problem implemented in the computer, because a scalar variable

(
Φm

h

)
is used instead

of a vector field(HHHm
h ) in the dielectric domain.

Notice that for all timem the following constraints must be imposed:

•
(

HHHm
h | g̃radΦ̃m

h

)
∈ H(curl;Ω), which arises in the definition ofY h;

• [[Φ̃m
h ]]Σn

= constant,n = 1, . . . ,L, which arise in the definition ofΘh.
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To deal with these conditions, we employ the following procedure (see Berḿudezet al.(2002) for more
details).

For the first one we use that, for
(

HHHm
h | g̃radΦ̃m

h

)
∈ H(curl;Ω),

∫

ℓ
HHHm

h · tttℓ =
∫

ℓ
g̃radΦ̃m

h · tttℓ = Φ̃m
h

(
P+
ℓ

)
− Φ̃m

h

(
P−
ℓ

)
∀ℓ edge ofTh : ℓ ⊂ ΓI,

whereP−
ℓ andP+

ℓ are the initial and end points ofℓ, respectively, andtttℓ the unit tangent vector pointing
from P−

ℓ to P+
ℓ . Then the degrees of freedom ofHHHm

h associated with the edgesℓ ⊂ ΓI are eliminated by
static condensation in terms of those ofΦ̃m

h corresponding to the vertices of the mesh onΓI.
Regarding the second constraint, for each cut surfaceΣn, we in principle distinguish the degrees of

freedom ofΦ̃m
h on Σ+

n from those onΣ−
n . Then the latter are eliminated by using

Φ̃m
h |Σ−

n
= Φ̃m

h |Σ+
n

+[[Φ̃m
h ]]Σn

,

with [[Ψ̃h]]Σn
= 0 for the test functions and[[Φ̃m

h ]]Σn
= In(tm) for the trial functions whereIn(tm), n =

1, · · · ,N, are the input current intensities andIn(tm), n = N + 1, · · · ,L, will be additional degrees of
freedom of the problem. We notice that these additional unknowns, In(tm) n = N + 1, · · · ,L, are the
intensities crossing through the conductors called workpieces, which are only due to induced currents
because they are not connected with any power source.

6. Numerical experiments

In this section we report some numerical result obtained with a MATLAB code implementing the nu-
merical method described above. First, we present a test with a known analytical solution to validate
the computer code and to test the error estimates proved above. Finally, we will apply the method to a
problem arising from an electromagnetic forming process.

6.1 A test with known analytical solution

The problem solved in this section has been already solved inBermúdezet al. (2002) in harmonic
regime. This is the reason why we only give here a brief description and refer the reader to the quoted
paper for further details. Figure 2 shows a sketch of the domain where the conducting partΩC and
the whole domainΩ are coaxial cylinders. An alternating current of intensityI(t) = I0cos(ωt) enters
the conductor throughΓ 1

J
and goes throughΩC in the axial direction;I0 denotes the amplitude of the

intensity andω the angular frequency. It is easy to obtain an analytical solution of the eddy current
problem inΩ by writing all the fields in the formFFF(t,xxx) = Re(eiωtF (xxx)). In particular, the solution
leads to a magnetic field which has only an azimuthal component and is defined by a scalar multivalued
potential in the dielectric domain. Notice that in this casewe only need one cutting surface in the
dielectric domain. To determine the order of convergence, the numerical method has been used on
several successively refined meshes and the time-step has been conveniently reduced to analyze the
convergence with respect to both, the mesh-size and the time-step. We have compared the obtained
numerical solutions with the analytical one.

In order to analyze the linear convergence respect to the mesh-size and the time-step, we have
computed the relative errors of the different fields corresponding to

(
h
n, ∆ t

n

)
, n = 1, . . . ,6. Figure 3

shows log-log plots of the relative error for the magnetic field HHH in C 0([0,T];H(curl;Ω))-norm (left)
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FIG. 2. Sketch of the domain in the analytical example.
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FIG. 3.
max

16k6M
‖HHH(tk)−HHHk

h‖H(curl;Ω)

max
16k6M

‖HHH(tk)‖H(curl;Ω)
(left) and

√
∆ t

M

∑
k=1

∥∥∥∥∥∂tHHH(tk)−
HHHk

h−HHHk−1
h

∆ t

∥∥∥∥∥
L2(Ω)3

√
∆ t ∑M

k=1‖∂t HHH(tk)‖L2(Ω)3
(right) versus number of d.o.f. (log-log scale).

and for its derivative∂tHHH in L2(0,T;L2(Ω)3)-norm (right) versus the number of degrees of freedom
(d.o.f.).

The slopes of the curves clearly show an order of convergenceO(h+∆ t) for all the quantities, which
agrees with the theoretical results, since the solution is smooth and hence the hypotheses of Theorem 5.2
are fulfilled forr = 1.

6.2 A problem arising from an electromagnetic forming process

Electromagnetic Forming is a metal working process that relies on the use of electromagnetic forces to
deform metallic workpieces at high speeds. A transient electric current is induced in a coil which pro-
duces a magnetic field that penetrates a nearby conductive workpiece where an eddy current is generated.
The magnetic field, together with the eddy current, induce Lorentz forces that drive the deformation of
the workpiece (see, for instance El-Azabet al. (2003)). In this section, we have simulated the electro-



NUMERICAL SOLUTION OF TRANSIENT EDDY CURRENT PROBLEMS 25 of 28

magnetic behavior of a 3D workpiece under the action of a coil. It corresponds to a similar configuration
to the one presented in Ulaciaet al. (2009), but with simpler geometry and workpiece data. The coil
and workpiece are presented in Figure 4, which also shows a typical mesh of the conducting domain.
DomainΩ has been chosen as a box surrounding the conductor. Notice that we only need to build a
cutting surface in the dielectric domain. The current intensity which enters the coil is shown in Figure
5; a typical curve in electromagnetic forming. Concerning the physical properties, the workpiece is a
magnesium alloy and the coil is made with copper (see Table 2 of Ulaciaet al. (2009)). Figure 6 shows

Workpiece

Coil

Y

X

Z

X
Y

Z

FIG. 4. Mesh of the conducting domain (left). Detail of the coil mesh (right).

the computed resultant of the Lorentz force versus time in the workpiece; the peak value corresponds to
the time in which the input current intensity reaches its maximum (0.00018 s). All the other reported
results correspond to this time. Figure 7 shows the modulus of the current density in the conducting
domain. Figure 8 shows the current density vector field. Finally, Figure 9 shows the Lorentz force in
the workpiece.
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FIG. 5. Current intensity (A) vs. time (s).
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FIG. 6. Resultant of the Lorentz force (N) in the work-
piece vs. time (s).
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FIG. 7. Modulus of the current density in coil and workpiece at time 0.00018 s.
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FIG. 8. Distribution of the current density (vector field) in coil and workpiece (underside) at time 0.00018 s.
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FIG. 9. Lorentz force in the workpiece at time 0.00018 s.
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Since this approach is also able to deal with non simply connected conductors we have solved
another example in which the workpiece is as shown in Figure 10. In this case, two cut surfaces are
needed, one contained in the interior ofΩD and the other touching∂ΩD. As we have explained above,
in this example the induced current intensity in the workpiece is an additional unknown which must
be computed at each time step. Figure 11 shows the modulus of the induced current density in the
workpiece att = 0.00018 s. Figure 12 shows the additional unknown (induced current intensity in the
workpiece) versus time.
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FIG. 10. Mesh of the workpiece.
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FIG. 11. Modulus of the current density in workpiece
at time 0.00018 s.
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FIG. 12. Induced current intensity (A) vs. time (s).
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ALONSO RODRÍGUEZ, A., VALLI , A. & V ÁZQUEZ, R. (2009) A formulation of the eddy current problem in the
presence of electric ports,Numer. Math.113, no. 4, 643–672.

AMROUCHE, C., BERNARDI, C., DAUGE, M. & G IRAULT, V. (1998) Vector potentials in three-dimensional
non-smooth domains,Math. Methods Appl. Sci.21, 823–864.
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ble: An hp finite element adaptive method to compute the vibration modes of a fluid-
solid coupled system
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