EVALUACION 1

Análisis Funcional y Aplicaciones I (525401)

Martes 9 de Noviembre de 2010

Prof. Gabriel N. Gatica.

- 1. Sea $(X, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert sobre \mathbb{R} con aplicación de Riesz $\mathcal{R}: X' \to X$.
 - a) Demuestre que para todo subconjunto M de X se tiene que

$$\mathcal{R}^{-1}(M^{\perp}) = \left\{ F \in X' : F(x) = 0 \quad \forall x \in S \right\},\,$$

donde S es el subespacio cerrado generado por M.

b) Defina $[\cdot,\cdot]: X' \times X' \to \mathbb{R}$ por

$$[F,G] := \langle \mathcal{R}(F), \mathcal{R}(G) \rangle \quad \forall F, G \in X',$$

y pruebe que $(X', [\cdot, \cdot])$ es un espacio de Hilbert.

2. Sea X un espacio vectorial normado sobre $\mathbb R$ y denote por X'' al dual del dual X', es decir

$$X'' := \left\{ \mathcal{F} : X' \to \mathbb{R} : \quad \mathcal{F} \text{ es lineal y acotado} \right\}.$$

Demuestre que para cada $x \in X$ el funcional $J(x): X' \to \mathbb{R}$ definido por $J(x)(F) := F(x) \ \forall F \in X'$ es un elemento de X'', y que la aplicación resultante $J: X \to X''$ es inyectiva e isométrica. Además, utilice lo estipulado en el Problema 1 b) para probar que si X es un Hilbert entonces J es biyectiva.

3. Considere la partición uniforme $0=x_0< x_1=1< x_2=2< x_3=3$ del dominio $\Omega:=]0,3[,$ y defina el subespacio de $H^1_0(\Omega)$ dado por

$$S := \left\{ v \in C(\overline{\Omega}) : \ v(0) = v(3) = 0 \ \text{y} \ v|_{[x_{j-1}, x_j]} \ \text{es una recta} \ \forall j \in \{1, 2, 3\} \right\}.$$

- a) Demuestre que $\{e_1, e_2\}$ es una base de S, donde e_j es el único elemento de S tal que $e_j(x_i) = \delta_{ij}$ para todo $i, j \in \{1, 2\}$.
- b) Defina explícitamente el proyector ortogonal $P: H^1_0(\Omega) \to S^{\perp}$ con respecto al producto escalar $\langle v, w \rangle := \int_{\Omega} v' \, w' \quad \forall \, v, \, w \, \in \, H^1_0(\Omega).$
- 4. Sea S un subespacio vectorial de un espacio vectorial normado X tal que $\overline{S} \neq X$. Demuestre (DE DOS MANERAS DISTINTAS) que existe $F \in X'$ tal que $||F|| \neq 0$ y $F(x) = 0 \quad \forall x \in S$.

5. Sea Ω un abierto acotado de \mathbb{R}^n , y sea $\kappa:\Omega\to\mathbb{R}$ una función continua para la cual existen constantes $M,\,\beta>0$, tales que $\beta\leq\kappa(x)\leq M$ para todo $x\in\Omega$. Demuestre, utilizando algún resultado de dualidad, que para todo $f\in L^2(\Omega)$ existe un único $u\in H^1(\Omega)$ tal que

$$\int_{\Omega} \left\{ \kappa \nabla u \cdot \nabla v + \frac{1}{\kappa} u v \right\} = \int_{\Omega} f v \qquad \forall v \in H^{1}(\Omega),$$

$$\|u\|_{H^{1}(\Omega)} \leq \left\{ \frac{M}{\min\left\{\beta, \frac{1}{M}\right\}} \right\}^{1/2} \|f\|_{L^{2}(\Omega)}.$$

CADA PROBLEMA VALE 1.5 PUNTOS. ELIJA 4 DE ELLOS

GGP/ggp