EVALUACION 1

Análisis Funcional y Aplicaciones I (525401).

Viernes 26 de Mayo de 2006

Prof. Gabriel N. Gatica.

1. Sea X := C([0,1]) provisto de la norma uniforme

$$||u|| := \max\{ |u(t)| : t \in [0,1] \} \quad \forall u \in X,$$

y dado $f \in X$, fijo, defina el funcional lineal $F: X \to \mathbb{R}$ como

$$F(u) := \int_0^1 u(t) f(t) dt \qquad \forall u \in X.$$

Demuestre que $F \in X'$ y $||F|| = \int_0^1 |f(t)| dt$.

INDICACIÓN: Para cada $n \in \mathbb{N}$ considere $x_n \in X$ dada por $x_n(t) := u_n(f(t))$ $\forall t \in [0,1]$, donde $u_n : \mathbb{R} \to \mathbb{R}$ es la función continua

$$u_n(t) := \begin{cases} 1 & \text{si } t \ge 1/n, \\ -1 & \text{si } t \le -1/n, \\ n t & \text{si } -1/n \le t \le 1/n, \end{cases}$$

y luego use x_n para probar que $||F|| \ge \int_0^1 |f(t)| dt - \frac{1}{n}$.

2. Dados $A \in \mathbb{R}^{m \times n}$ y $b \in \mathbb{R}^m$, $b \neq \mathbf{0}$, defina el conjunto solución

$$S(A, b) := \{ x \in \mathbb{R}^n : Ax = b \}.$$

Suponga que $S(A,b) \neq \phi$ y pruebe que existe $z \in \mathbb{R}^n$ tal que

$$\inf_{x \in S(A,b)} \langle z, x \rangle_{\mathbb{R}^n} > 0.$$

- 3. a) Enuncie y demuestre el Teorema de Lax-Milgram para el caso de un espacio de Hilbert complejo.
 - b) Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert real y sea $A \in \mathcal{L}(H, H)$ el operador inducido por una forma bilineal y acotada $a: H \times H \to \mathbb{R}$. Además, sea Π la proyección ortogonal de H sobre un subespacio cerrado S, y suponga que existe $\alpha > 0$ tal que $a(v, v) \geq \alpha \langle v, v \rangle \quad \forall v \in S$. Demuestre que $\Pi A: S \to S$ es una biyección lineal.

- 4. Sea $(H, \langle \cdot, \cdot \rangle)$ un Hilbert y sea $P \in \mathcal{L}(H, H)$, no trivial. Se dice que P es un PROYECTOR si satisface $P^2 = P$. En tal caso se dice que P es un PROYECTOR ORTOGONAL si además verifica que $\langle u, v \rangle = 0 \quad \forall u \in R(P), \quad \forall v \in N(P)$.
 - a) Demuestre que si $P \in \mathcal{L}(H, H)$ es un proyector entonces $H = N(P) \oplus R(P)$ y $||P|| \ge 1$.
 - b) Demuestre que las siguientes afirmaciones son equivalentes:
 - i) P es un proyector ortogonal.
 - ii) $R(P) = N(P)^{\perp}$.
 - iii) P es autoadjunto
 - c) Demuestre que si $P \in \mathcal{L}(H, H)$ es un proyector ortogonal entonces ||P|| = 1.
- 5. Sean U, V, W subespacios de un espacio de Hilbert H. Pruebe que
 - a) $(U^{\perp})^{\perp} = \bar{U}$.
 - b) $(V + W)^{\perp} = V^{\perp} \cap W^{\perp}$.
 - c) $\overline{V^{\perp} + W^{\perp}} = (\overline{V} \cap \overline{W})^{\perp}$.
- 6. Sea $(H, \langle \cdot, \cdot \rangle_H)$ un espacio de Hilbert complejo y considere $H \times H$ provisto del producto escalar

$$\langle (u,v),(z,w)\rangle_{H\times H} := \langle u,z\rangle_H + \langle v,w\rangle_H \qquad \forall (u,v), (z,w) \in H\times H.$$

Además, dado $A \in \mathcal{L}(H,H)$, defina el operador $B: H \times H \to H \times H$ por

$$B((u,v)) := (i A(v), -i A^*(u)) \qquad \forall (u,v) \in H \times H.$$

Demuestre que ||B|| = ||A|| y que B es autoadjunto.

- 7. Sea Ω un dominio convexo y acotado de \mathbb{R}^2 con frontera poligonal Γ , y sean $\langle \cdot, \cdot \rangle_{L^2(\Omega)}$ y $\langle \cdot, \cdot \rangle_{H^1(\Omega)}$ los productos escalares de $L^2(\Omega)$ y $H^1(\Omega)$, respectivamente.
 - a) Pruebe que para todo $r \in L^2(\Omega)$ existe un único $z \in H^1(\Omega)$ tal que

$$\langle z, w \rangle_{H^1(\Omega)} = \langle r, w \rangle_{L^2(\Omega)} \quad \forall w \in H^1(\Omega).$$

b) Deduzca que z es la única solución débil del problema de valores de contorno:

$$-\Delta z + z = r$$
 en Ω , $\nabla z \cdot \boldsymbol{\nu} = 0$ en Γ ,

donde ν es el vector normal sobre Γ , y **observe** (no lo demuestre) que la convexidad de Ω garantiza que $z \in H^2(\Omega)$.

c) Defina un operador lineal apropiado y demuestre, utilizando el Teorema del Grafo Cerrado, que existe C>0 tal que

$$||z||_{H^2(\Omega)} \leq C ||r||_{L^2(\Omega)} \qquad \forall r \in L^2(\Omega).$$

- 8. Sea $(U, \|\cdot\|)$ un espacio vectorial normado y sea $\{v_1, v_2, ..., v_N\}$ una base de un subespacio V de U.
 - a) Demuestre que existen $f_1, f_2, ..., f_N \in U'$ tales que $f_j(v_i) = \delta_{ij} \quad \forall i, j \in \{1, ..., N\}.$
 - b) Encuentre un subespacio cerrado W de U tal que $U = V \oplus W$.
- 9. Sean X e Y Banach. Se dice que un operador lineal $A: \mathcal{D}(A) \subseteq X \to Y$ admite una clausura si existe un operador lineal $B: \mathcal{D}(B) \subseteq X \to Y$ tal que B es una extensión de A y $G(B) = \overline{G(A)}$. Demuestre que A admite una clausura si y sólo si para toda sucesión $\{x_n\}_{n\in\mathbb{N}} \subseteq \mathcal{D}(A)$ tal que $(x_n, A(x_n)) \stackrel{n\to\infty}{\to} (\mathbf{0}, y)$, con $y \in Y$, se tiene necesariamente que $y = \mathbf{0}$.

CADA PROBLEMA VALE 1 PUNTO. CONTESTE TODOS LOS QUE DESEE. SU NOTA SE CALCULARÁ CONSIDERANDO SÓLO LOS 6 CON MAYOR PUNTAJE.

GGP/ggp