# Counting perfect matchings of cubic graphs in the geometric dual

Marcos Kiwi University of Chile

Joint work with: Andrea Jiménez (U. Chile) & Martin Loebl (Charles U.) 1 Introduction

- 2 Our approach (planar graphs case) & Main results
- 3 Proof ideas
- 4 Non-planar case

### **Basic Definitions**



Cubic graphs

### Motivation

#### Petersen (1891)

Every cubic bridgeless graph has a perfect matching.

Conjecture by Lovász and Plummer from the mid-1970's

For every cubic bridgeless graph G, the number of perfect matchings is exponential in |V(G)|.

Positive resolution of the conjecture announced by Esperet, Kardos, King, Kral and Norine (Dec. 2010).

### Known results for special classes

- Voorhoeve (1979): Bipartites
- Chudnovsky and Seymour (2008): Planar graphs
- Sang-il Oum (2009): Claw-free

|  | Our approach (planar graphs case) & Main results | Proof ideas |  |
|--|--------------------------------------------------|-------------|--|
|  |                                                  |             |  |

#### 1 Introduction

#### 2 Our approach (planar graphs case) & Main results

#### 3 Proof ideas

#### 4 Non-planar case

| Int | rod  | LICT | ion |
|-----|------|------|-----|
|     | l ou | ucu  |     |

### Preliminaries

#### Dual graph: $G \leftrightarrow G^*$



### Some simple observations

#### Let G be a cubic bridgeless planar graph.

#### Proposition

 $G^*$  is a planar triangulation.

### Intersecting sets

Planar triangulation:  $\Delta$ 



Definition: [Intersecting set of  $\triangle$ ]

Set of edges of  $\Delta$  with exactly one edge from each of its faces.

### Intersecting sets (cont.)

#### Let G be a cubic bridgeless planar graph.

#### Proposition

M is a perfect matching of  $G \iff M^*$  is an intersecting set of  $G^*$ .

### Ising Model on frustrated triangulations

Let  $\Delta = (V, E)$  be a planar triangulation.

- A state of  $\Delta$  is any function  $\mathbf{s}: V \to \{+1, -1\}$ .
- Edges frustrated by s



- A state s is a groundstate if it frustrates the minimum possible number of edges of Δ.
- The degeneracy of  $\Delta$  is its number of groundstates, denoted  $g(\Delta)$ .



Groundstate and frustrated edges.

### A new concept

#### Definition: [Satisfying states]

A spin assignment that frustrates exactly one edge of each face of a triangulation  $\Delta.$ 

#### Every satisfying state is a groundstate!

Converse is true if the triangulation  $\Delta$  is planar. Not true in general (more on this later!).

### Reformulation of Lovász and Plummer's conjecture

#### Let G be a cubic bridgeless planar graph and $\Delta_G$ its dual graph.

#### Theorem

The number of perfect matchings of G is  $\frac{1}{2}g(\Delta_G)$ .

|  | Our approach (planar graphs case) & Main results | Proof ideas |  |
|--|--------------------------------------------------|-------------|--|
|  |                                                  |             |  |

#### 1 Introduction

#### 2 Our approach (planar graphs case) & Main results

#### 3 Proof ideas

#### 4 Non-planar case

### Main results

### Let $\varphi = (1+\sqrt{5})/2 \approx 1.6180$ be the golden ratio.

#### Theorem

The degeneracy of a stack triangulation  $\Delta$  with  $|\Delta|$  vertices is at least  $6\varphi^{(|\Delta|+3)/36}$ .

#### Corollary

The number of perfect matchings of a cubic graph G, whose dual graph is a stack triangulation is at least  $3\varphi^{|V(G)|/72}$ .

### Stack triangulations or 3-trees



 $\Delta$ 

#### 1 Introduction

#### 2 Our approach (planar graphs case) & Main results

#### 3 Proof ideas

#### 4 Non-planar case

### Degeneracy of stack triangulations

#### Goal

Given a stack triangulation  $\Delta$ , find a degeneracy vector  $\mathbf{v}_{\vec{\Delta}} \in \mathbb{R}^4$  such that  $||\mathbf{v}_{\vec{\Delta}}||_1 = \frac{1}{2}g(\Delta)$ .

#### Description of $\mathbf{v}_{\vec{\Delta}}$ :

- Coordinates indexed by  $I = \{+++, ++-, +-+, +--\}$ .
- For  $\phi \in I$ ,  $\mathbf{v}_{\vec{\Delta}}[\phi]$  is the number of satisfying states of  $\Delta$  when the spin assignment of its outer-face is  $\phi$ .

### Example: $|\Delta| = 5$





### Recursive construction of $\boldsymbol{v}_{\vec{\Lambda}}$ for stack triangulations



#### Proposition

For  $j \in \{1, 2, 3\}$ , let  $\mathbf{v}_{\vec{\Delta}^j} = (v_j^k)_{k \in \{0, 1, 2, 3\}}$ . Then,

$$\mathbf{v}_{\vec{\Delta}} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{pmatrix} v_1^0 v_2^0 v_3^0 + v_1^1 v_2^1 v_3^1 \\ v_1^0 v_2^2 v_3^3 + v_1^1 v_2^3 v_3^2 \\ v_1^2 v_2^3 v_3^0 + v_1^3 v_2^2 v_3^1 \\ v_1^2 v_2^1 v_3^3 + v_1^3 v_2^0 v_2^3 \end{pmatrix}$$

### Particular case: Strip stacks



But  $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$  is linear in each  $\mathbf{v}_j$ , and two of the  $\mathbf{v}_j$ 's are  $(0, 1, 1, 1)^t$ .

### Degeneracy vector of strips

#### Lemma

If  $\vec{\Delta}_0$  is a strip triangulation with inner face  $\vec{\Delta}_\ell$ , then for some  $M_1, \ldots, M_\ell \in \{A, B, C\}$ 

$$\mathbf{v}_{\vec{\Delta}_{\ell}} = M_{\ell} \cdot M_{\ell-1} \cdots M_1 \cdot \mathbf{v}_{\vec{\Delta}_0}$$

where

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

### Degeneracy of strip stacks

#### Theorem

If  $\vec{\Delta}$  is a strip triangulation of length  $\ell$  with inner face  $\vec{\Delta'}$ , then

$$\mathbf{v}_{\vec{\Delta}'} \ge (\varphi^{e'_j})_{j=0,1,2,3} \Longrightarrow \mathbf{v}_{\vec{\Delta}} \ge (\varphi^{e_j})_{j=0,1,2,3} \,,$$

where

$$\sum_{j=0}^{4} e_j \geq \frac{1}{2}(\ell-3) + \sum_{j=0}^{4} e'_j.$$

### General Case





### Proof at a glance



- 1 Build  $T_{\vec{\Delta}}$ .
- **2** Prune leafs of  $T_{\vec{\Delta}}$ .
- **3** Prune and obtain  $\tilde{T}_{\vec{\Delta}}$  s.t.  $|\tilde{T}_{\vec{\Delta}}| \geq \frac{1}{3} |\Delta| 1$ .
- 4 Note that  $\mathbf{v}_{\Delta_u} \geq (1, 1, 1, 1)^t$  for every leaf of u of  $\tilde{T}_{\vec{\Delta}}$ .
- **5** Lower bound  $\mathbf{v}_{\Delta}$  working bottom up
  - Show that progress is made at vertices v of  $\tilde{T}_{\vec{\Delta}}$  with more than one children.
  - Show that progress is made if the subtree of T̃<sub>∆</sub> rooted at v is a path P<sub>v,w</sub> of length at least 5 plus a tree T̃<sub>w</sub> rooted at a node w with at least two descendants.
  - Observe that either (a) or (b) must happen before too long.

#### 1 Introduction

#### 2 Our approach (planar graphs case) & Main results

#### 3 Proof ideas

#### 4 Non-planar case

### Natural question

Can the proof argument be extended to the general (non-planar) case?

Seems so! By Polyhedral Embedding Conjecture: Every cubic bridgeless graph may be embedded to an orientable surface so that every two faces that intersect do so in a single edge.

But! Every triangulation has groundstates (by definition), but not necessarily has satisfying states (although, planar triangulations do).

### Hearsay

Physicists expect that geometrically frustrated systems (like surface triangulations) are such that if they admit satisfying states, then they have an exponential number of them.

## What aboud the complexity of deciding existence and enumerating satisfying states?

- It is NP-complete to decide, given a surface triangulation, whether or not it admits a satisfying state.
- It is #P-complete (under parsimonious reductions) to enumerate, given a surface triangulation, the number of satisfying states it admits.
- (Maybe already known) It is #P-complete to enumerate, given a surface triangulation, the number of its groundstates. Same holds for the number of Max-Cuts.

### Reduction sketch

Reduction from Positive-Not-All-Equal-3SAT. Follows the usual gadget type construction. But, gadgets are rather atypical.



Figure: Choice gadget.

Characteristics: 8 nodes and genus 1.



Figure: Block replicator gadget sketch

Characteristics: 25 nodes and genus 4.



Figure: Choice gadget.

Characteristics: 11 nodes and genus 1.

Given an instance  $\varphi$  of Positive-Not-All-Equal-3SAT with n variables and m clauses, the reduction computes a rotation system for a triangulation  $\Delta_{\varphi}$  of a surface of genus

$$m + 2(n+1) + 4\sum_{i=1}^{n} 2^{k_i - 1},$$

where  $k_i = 2 \max\{1, \lceil 0.5 \log_2 t_i \rceil\}$  and  $t_i$  denotes the number of clauses in which the *i*-th variable of  $\varphi$  appears. Moreover, the number of satisfying states of  $\Delta_{\varphi}$  is 4 times the number of satisfying assignments of  $\varphi$ .

Is there an infinite family of triangulations that admit satisfying states, but no more than a given constant?

YES! Contrary to physicist's intuition.

| Our approach (planar graphs case) & Main results | Proof ideas | Non-planar case |
|--------------------------------------------------|-------------|-----------------|
|                                                  |             |                 |

### THE END!