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Motivation

Petersen (1891)

Every cubic bridgeless graph has a perfect matching.

Conjecture by Lovasz and Plummer from the mid-1970's

For every cubic bridgeless graph G, the number of perfect matchings
is exponential in [V (G)].

Positive resolution of the conjecture announced by Esperet,
Kardos, King, Kral and Norine (Dec. 2010).
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Known results for special classes

m Voorhoeve (1979): Bipartites
m Chudnovsky and Seymour (2008): Planar graphs
m Sang-il Oum (2009): Claw-free



Our approach (planar graphs case) & Main results

Our approach (planar graphs case) & Main results



Our approach (planar graphs case) & Main results

Preliminaries

Dual graph: G < G*
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Some simple observations

Let GG be a cubic bridgeless planar graph.

G* is a planar triangulation.
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Intersecting sets

Planar triangulation: A

Definition: [Intersecting set of |

Set of edges of A with exactly one edge from each of its faces.
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Intersecting sets (cont.)

Let G be a cubic bridgeless planar graph.

M is a perfect matching of G <= M™ is an intersecting set of G*.
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Ising Model on frustrated triangulations

Let A = (V, E) be a planar triangulation.
m A state of A is any function s : V — {+1,-1}.
m Edges frustrated by s
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m A state s is a groundstate if it frustrates the minimum possible
number of edges of A.

m The degeneracy of A is its number of groundstates, denoted
9(A).
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Groundstate and frustrated edges.
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A new concept

Definition: [Satisfying states]

A spin assignment that frustrates exactly one edge of each face of
a triangulation A.

Every satisfying state is a groundstate!

Converse is true if the triangulation A is planar. Not true in
general (more on this later!).
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Reformulation of Lovdsz and Plummer's conjecture

Let G be a cubic bridgeless planar graph and A its dual graph.

The number of perfect matchings of G is %g(Ag).
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Main results

Let ¢ = (14 +/5)/2 ~ 1.6180 be the golden ratio.

Theorem

The degeneracy of a stack triangulation A with |A| vertices is at
least G(1A1+3)/36,

Corollary

The number of perfect matchings of a cubic graph GG, whose dual
graph is a stack triangulation is at least 3!V (G)I/72,
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Stack triangulations or 3-trees
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Degeneracy of stack triangulations

Given a stack triangulation A, find a degeneracy vector v € R*
such that |[vz|l1 = 3g(A).

Description of v:
m Coordinates indexed by I = {+ ++,++ —,+ —+,+ — —}.

m For ¢ € I, vz[¢)] is the number of satisfying states of A when
the spin assignment of its outer-face is ¢.



Example: |A] =5
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Recursive construction of v; for stack triangulations

A

P

Proposition

FOTj € {1,2,3}, let V&j = (U?)RE{O,LZ,?)}' Then,
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Particular case: Strip stacks

But [vi,va,v3] is linear in each v;, and two of the v;'s are
(0,1,1,1)".
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Degeneracy vector of strips

Lemma

If Ao is a strip triangulation with inner face &g, then for some
My, ..., My € {A,B,O}

v&g:Mg.szl..'Ml.vAO7

where

o O~ O
O O = =
_ o O O
HES Sl =
o~ OO
SO = O =
o O~ O
—_ o O O
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Degeneracy of strip stacks

If Ais a strip triangulation of length ¢ with inner face A’, then

/

Vi > (%) j=0123 = Vi > (0%)j=0,1,23,

where
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General Case

f3

Root of TE < Outer-face of A

Leaves of TE < Inner faces of A



Proof at a glance

Proof ideas

Build Tx.

Prune leafs of T&'

Prune and obtain T; s.t. [Tx| > 3|A|-1.

Note that va, > (1,1,1,1)" for every leaf
of uof Tz,

Lower bound va working bottom up

m Show that progress is made at vertices v
of TA with more than one children.

m Show that progress is made if the subtree
of TA rooted at v is a path P, ,, of
length at least 5 plus a tree T,, rooted at
a node w with at least two descendants.

m Observe that either (a) or (b) must
happen before too long.
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Non-planar case

Natural question

Can the proof argument be extended to the general (non-planar)
case?

Seems so! By Polyhedral Embedding Conjecture: Every cubic bridgeless
graph may be embedded to an orientable surface so that every two faces
that intersect do so in a single edge.

But! Every triangulation has groundstates (by definition), but not
necesarily has satisfying states (although, planar triangulations do).
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Hearsay

Physicists expect that geometrically frustrated systems (like
surface triangulations) are such that if they admit satisfying states,
then they have an exponential number of them.
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What aboud the complexity of deciding existence and enumerating
satisfying states?

m It is NP-complete to decide, given a surface triangulation,
whether or not it admits a satisfying state.

m It is #P-complete (under parsimonious reductions) to
enumerate, given a surface triangulation, the number of
satisfying states it admits.

m (Maybe already known) It is # P-complete to enumerate,
given a surface triangulation, the number of its groundstates.
Same holds for the number of Max-Cuts.
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Reduction sketch

Reduction from Positive-Not-Al11-Equal-3SAT. Follows the
usual gadget type construction. But, gadgets are rather atypical.

Variable cycle
Figure: Choice gadget.

Characteristics: 8 nodes and genus 1.
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Outgoing cycles Incoming cycle

Figure: Block replicator gadget sketch

Characteristics: 25 nodes and genus 4.
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Literal cycles

Figure: Choice gadget.

Characteristics: 11 nodes and genus 1.
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Wrapp up

Given an instance ¢ of Positive-Not-Al1-Equal-3SAT with n
variables and m clauses, the reduction computes a rotation system
for a triangulation A, of a surface of genus

n
m42(n+1)+4) 2k
=1

where k; = 2max{1, [0.5log,¢;|} and t; denotes the number of
clauses in which the i-th variable of ¢ appears. Moreover, the
number of satisfying states of A, is 4 times the number of
satisfying assignments of .
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Is there an infinite family of triangulations that admit satisfying
states, but no more than a given constant?

YES! Contrary to physicist’s intuition.



THE END!
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