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Basic Definitions

Cubic graphs
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Motivation

Petersen (1891)

Every cubic bridgeless graph has a perfect matching.

Conjecture by Lovász and Plummer from the mid-1970’s

For every cubic bridgeless graph G, the number of perfect matchings
is exponential in |V (G)|.

Positive resolution of the conjecture announced by Esperet,
Kardos, King, Kral and Norine (Dec. 2010).



Introduction Our approach (planar graphs case) & Main results Proof ideas Non-planar case

Known results for special classes

Voorhoeve (1979): Bipartites

Chudnovsky and Seymour (2008): Planar graphs

Sang-il Oum (2009): Claw-free
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Preliminaries

Dual graph: G ↔ G∗



Introduction Our approach (planar graphs case) & Main results Proof ideas Non-planar case

Some simple observations

Let G be a cubic bridgeless planar graph.

Proposition

G∗ is a planar triangulation.
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Intersecting sets

Planar triangulation: ∆

Definition: [Intersecting set of ∆]

Set of edges of ∆ with exactly one edge from each of its faces.
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Intersecting sets (cont.)

Let G be a cubic bridgeless planar graph.

Proposition

M is a perfect matching of G ⇐⇒ M∗ is an intersecting set of G∗.
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Ising Model on frustrated triangulations

Let ∆ = (V,E) be a planar triangulation.

A state of ∆ is any function s : V → {+1, -1}.
Edges frustrated by s

++

−−

A state s is a groundstate if it frustrates the minimum possible
number of edges of ∆.

The degeneracy of ∆ is its number of groundstates, denoted
g(∆).
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Groundstate and frustrated edges.
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A new concept

Definition: [Satisfying states]

A spin assignment that frustrates exactly one edge of each face of
a triangulation ∆.

Every satisfying state is a groundstate!

Converse is true if the triangulation ∆ is planar. Not true in
general (more on this later!).
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Reformulation of Lovász and Plummer’s conjecture

Let G be a cubic bridgeless planar graph and ∆G its dual graph.

Theorem

The number of perfect matchings of G is 1
2g(∆G).
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Main results

Let ϕ = (1 +
√

5)/2 ≈ 1.6180 be the golden ratio.

Theorem

The degeneracy of a stack triangulation ∆ with |∆| vertices is at
least 6ϕ(|∆|+3)/36.

Corollary

The number of perfect matchings of a cubic graph G, whose dual
graph is a stack triangulation is at least 3ϕ|V (G)|/72.
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Stack triangulations or 3-trees

∆
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Degeneracy of stack triangulations

Goal

Given a stack triangulation ∆, find a degeneracy vector v~∆ ∈ R4

such that ||v~∆||1 = 1
2g(∆).

Description of v~∆:

Coordinates indexed by I = {+ + +,+ +−,+−+,+−−}.
For φ ∈ I, v~∆[φ] is the number of satisfying states of ∆ when
the spin assignment of its outer-face is φ.
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Example: |∆| = 5

+/-

-

-

++

v~∆ =


1
2
1
1


+++

++−
+−+

−++
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Recursive construction of v~∆ for stack triangulations

~∆2~∆3~∆

~∆1

Proposition

For j ∈ {1, 2, 3}, let v~∆j = (vkj )k∈{0,1,2,3}. Then,

v~∆ = [v1, v2, v3] =


v0
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0
2v

0
3 + v1
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1
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 .
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Particular case: Strip stacks

Inner face

But [v1, v2, v3] is linear in each vj , and two of the vj ’s are
(0, 1, 1, 1)t.
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Degeneracy vector of strips

Lemma

If ~∆0 is a strip triangulation with inner face ~∆`, then for some
M1, . . . ,M` ∈ {A,B,C}

v~∆`
= M` ·M`−1 · · ·M1 · v~∆0

,

where

A=


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 0

 , B=


0 1 0 0
0 0 0 1
0 0 1 0
1 1 0 0

 , C=


0 1 0 0
0 0 1 0
1 1 0 0
0 0 0 1

 .
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Degeneracy of strip stacks

Theorem

If ~∆ is a strip triangulation of length ` with inner face ~∆′, then

v~∆′ ≥ (ϕe′j )j=0,1,2,3 =⇒ v~∆ ≥ (ϕej )j=0,1,2,3 ,

where
4∑

j=0

ej ≥
1

2
(`− 3) +

4∑
j=0

e′j .
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General Case

f1

f2f3

~∆ T~∆

Root of T~∆ ↔ Outer-face of ~∆

Leaves of T~∆ ↔ Inner faces of ~∆



Introduction Our approach (planar graphs case) & Main results Proof ideas Non-planar case

Proof at a glance

1 Build T~∆.

2 Prune leafs of T~∆.

3 Prune and obtain T̃~∆ s.t. |T̃~∆| ≥
1
3 |∆|−1.

4 Note that v∆u ≥ (1, 1, 1, 1)t for every leaf
of u of T̃~∆.

5 Lower bound v∆ working bottom up

Show that progress is made at vertices v
of T̃~∆ with more than one children.
Show that progress is made if the subtree
of T̃~∆ rooted at v is a path Pv,w of

length at least 5 plus a tree T̃w rooted at
a node w with at least two descendants.
Observe that either (a) or (b) must
happen before too long.
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Natural question

Can the proof argument be extended to the general (non-planar)
case?

Seems so! By Polyhedral Embedding Conjecture: Every cubic bridgeless
graph may be embedded to an orientable surface so that every two faces
that intersect do so in a single edge.

But! Every triangulation has groundstates (by definition), but not
necesarily has satisfying states (although, planar triangulations do).
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Hearsay

Physicists expect that geometrically frustrated systems (like
surface triangulations) are such that if they admit satisfying states,
then they have an exponential number of them.
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What aboud the complexity of deciding existence and enumerating
satisfying states?

It is NP-complete to decide, given a surface triangulation,
whether or not it admits a satisfying state.

It is #P -complete (under parsimonious reductions) to
enumerate, given a surface triangulation, the number of
satisfying states it admits.

(Maybe already known) It is #P -complete to enumerate,
given a surface triangulation, the number of its groundstates.
Same holds for the number of Max-Cuts.
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Reduction sketch

Reduction from Positive-Not-All-Equal-3SAT. Follows the
usual gadget type construction. But, gadgets are rather atypical.

CL

Variable cycle

Figure: Choice gadget.

Characteristics: 8 nodes and genus 1.
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Outgoing cycles Incoming cycle

Figure: Block replicator gadget sketch

Characteristics: 25 nodes and genus 4.
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Literal cycles

Figure: Choice gadget.

Characteristics: 11 nodes and genus 1.
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Wrapp up

Given an instance ϕ of Positive-Not-All-Equal-3SAT with n
variables and m clauses, the reduction computes a rotation system
for a triangulation ∆ϕ of a surface of genus

m+ 2(n+ 1) + 4

n∑
i=1

2ki−1 ,

where ki = 2 max{1, d0.5 log2 tie} and ti denotes the number of
clauses in which the i-th variable of ϕ appears. Moreover, the
number of satisfying states of ∆ϕ is 4 times the number of
satisfying assignments of ϕ.
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Is there an infinite family of triangulations that admit satisfying
states, but no more than a given constant?

YES! Contrary to physicist’s intuition.
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THE END!
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