Synchronization and Limit Behaviors in Cellular Automata

G. Theyssier

LAMA (CNRS, Université de Savoie, France)

November 2011

Overview of the talk

1 Cellular Automata & Limit Behaviors

2 Possible Limit

Overview of the talk

1 Cellular Automata & Limit Behaviors

2 Possible Limit

One-dimensional CA

Q set of states

- r radius of neighborhood
- $f: Q^{2r+1} \rightarrow Q$ local transition function
- $Q^{\mathbb{Z}}$ set of **configurations**
- $F: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}$ global transition function

- *Q* = {0, 1, 2, 3, 4} *r* = 1
- $f(x, y, z) = \max(x, y, z)$

Limit behaviors

Possible

 $u \text{ limit word} \\ \Leftrightarrow \\ F^{-t}(u) \text{ never empty}$

Configurations made exclusively of limit words

Typical

 $u \mu$ -limit word \Leftrightarrow $F^{-t}(u)$ don't get negligible Ω_{μ} configurations made exclusively of μ -limit words

Limit set (Ω)

• $\Omega=$ "decreasing then increasing" configurations

μ -limit set (Ω_{μ})

[u]: configurations where word u occurs in the center

• μ a translation invariant measure (in this talk: Bernouilli)

Definition

• u is a μ -limit word if

$$\lim_{t\to\infty}\mu\big(F^{-t}([u])\big)\not\to 0$$

• Ω_{μ} is the set of configurations made only of μ -limit words

Limit Sets of Cellular Automata Associated to Probability Measures P. Kůrka, A. Maass, 2000

μ -limit set (Ω_{μ})

$$Q = \{0, 1, 2, 3, 4\}$$

$$r = 1$$

$$f(x, y, z) = \max(x, y, z)$$

•
$$\Omega_{\mu} = \{^{\omega} \mathbf{4}^{\omega}\}$$

1 $u \in (Q \setminus \{4\})^* \Rightarrow$ pre-images of u in $(Q \setminus \{4\})^*$ 2 $\mu((Q \setminus \{4\})^n) \to 0$ when $n \to \infty$

Ω_{μ} and density

density of word u in configuration c

$$d_c(u) = \limsup_{n \to \infty} \frac{|c_{-n,n}|_u}{2n+1}$$

• configuration *c* is μ -generic if $d_c(u) = \mu([u])$ for all *u*

Property

The following are equivalent:

- **1** *u* is a μ -limit word for *F*
- 2 for any μ -generic configuration c

 $d_{F^t(c)}(u)
eq 0$

when $t \to \infty$

Overview of the talk

1 Cellular Automata & Limit Behaviors

2 Possible Limit

Synchronization task #1

Find some *F* such that...

for all t there is an initial configuration c_t with

- all cells are in state 0 at time t
- 2 no 0 appears before time t

Synchronization task #1

Find some *F* such that...

for all t there is an initial configuration c_t with

- 1 all cells are in state 0 at time t
- 2 no 0 appears before time t

Well known solutions: firing squad CA

J. Kari's firing squad

time

Applications to Ω

Firing Squad Elevator

Raises any configuration to the limit set

- fix some F over states Q
- by adding a firing squad component to *F*, we can
 - 1 make any word in *Q** a limit word
 - **2** without changing the dynamics of F over $Q^{\mathbb{Z}}$

Formally: G over $(Q' \times Q) \cup Q$ such that

- **1** the whole set $Q^{\mathbb{Z}}$ is in $\Omega(G)$
- **2** *G* restricted to $Q^{\mathbb{Z}}$ is exactly *F*

Applications to Ω

Theorem (J. Kari, 1994)

Any non-trivial property of limit sets is undecidable

Theorem (P. Guillon, P.E. Meunier, GT, 2010)

There is an intrinsically universal CA with a simple limit set

(simple = logspace computable)

Rice Theorem for Ω

Firing Squad Elevator + Switch

Definition *F* **nilpotent** if $\Omega(F)$ is a singleton

Construction: $F, H \rightarrow G$

Is H nilpotent?

• YES:
$$\Omega(G) = \Omega(F)$$

NO: $\Omega(G) = \Omega_0$ independent of *F*

Rice Theorem for Ω

J. Kari, 1992

Nilpotency is an undecidable property

fix some property *P* of limit sets
choose F₁ and F₂ with
Ω(F₁) ∈ *P*Ω(F₂) ∉ *P*

■ aplly construction twice with the same *H*

Rice Theorem for Ω

J. Kari, 1992

Nilpotency is an undecidable property

■ fix some property \mathcal{P} of limit sets ■ choose F_1 and F_2 with ■ $\Omega(F_1) \in \mathcal{P}$ ■ $\Omega(F_2) \notin \mathcal{P}$

aplly construction twice with the same H

Overview of the talk

1 Cellular Automata & Limit Behaviors

2 Possible Limit

Synchronization task #2

■ fix some *n* ≥ 2

Find some *F* such that...

for almost all initial configuration c

any cell, after some time, is in state t mod n at time t

Synchronization task #2

■ fix some *n* ≥ 2

Find some *F* such that...

for almost all initial configuration c

any cell, after some time, is in state t mod n at time t

A solution exists!

Directional Dynamics along Arbitrary Curves in Cellular Automata M. Delacourt, V. Poupet, M. Sablik, GT, 2010

Time Counters Construction

- 1 only a valid zone can stop a valid zone
- 2 when two valid zones meet, the older is destroyed
- 3 two valid zones of equal age merge when they meet

Time Counters Construction

Implementation details

Construction for n=20:

2733 states

radius 4

Question

Is there a significantly smaller solution?

- Kari's firing squad: 16 states, radius 1
- Mazoyer's firing squad: 6 states, radius 1

Time Counters Construction

Implementation details

Construction for n=20:

- 2733 states
- radius 4

Question

Is there a significantly smaller solution?

- Kari's firing squad: 16 states, radius 1
- Mazoyer's firing squad: 6 states, radius 1

Other property

CA with equicontinuous points but none in the image set $F(Q^{\mathbb{Z}})$

Computation segment:

= **computation area** (Turing head + working space)

- = merging process info (time, length, random bits,...)
- = write once output

Applications to Ω_{μ}

IF

- segment size $ightarrow\infty$
- non-output part << segment size</p>

THEN

Characterization of Ω_{μ}

 $\mu\text{-limit}$ word are exactly words which are dense in the computation output (asymptotically)

Applications to Ω_{μ}

Construction of *µ*-limit sets *L. Boyer, M. Delacourt, M. Sablik (2010)*

Constructions with an ergodic point of view *M. Sablik* (Information & Randomness 2010, ALEA 2011)

Rice Theorem for μ-Limit Sets of Cellular Automata *M. Delacourt (2011)*

Rice Theorem for Ω_{μ}

Definition

F μ **-nilpotent** if $\Omega_{\mu}(F)$ is a singleton

a state is **persistent** if it cannot desappear from a cell

L. Boyer, V. Poupet, GT, 2006

μ-nilpotency is undecidable for CA with a persistent state
 μ-limit words are enumerable for such CA

Construction: $F, H \rightarrow G$

Is H µ-nilpotent?

Work in Progress / Future Work

complex μ -limit sets

higher complexity lower bounds for properties of limit sets

convergence behaviors (e.g. limit vs. ceasaro mean)

higher dimensions