Adding a referee to an interconnection network: What can be computed with little local information

Florent Becker, Martin Matamala, Nicolas Nisse, Ivan Rapaport, Karol Suchan, Ioan Todinca

DISCO, November 24, 2011

Frugal computation

- Distributed system (arbitrary graph G), synchronous, each node has an identifier
- Frugal computation: during the algorithm, only $O(\log n)$ bits pass through each edge.

Our model: add a referee (universal vertex) u to graph G. What can/cannot be computed frugally?

- Each node knows its neighbors. One more round of communication

Frugal computation

- Distributed system (arbitrary graph G), synchronous, each node has an identifier
- Frugal computation: during the algorithm, only $O(\log n)$ bits pass through each edge.

Our model: add a referee (universal vertex) u to graph G. What can/cannot be computed frugally?

- Each node knows its neighbors. One more round of communication
- u can decide if G is a tree, a planar graph...

Frugal computation

- Distributed system (arbitrary graph G), synchronous, each node has an identifier
- Frugal computation: during the algorithm, only $O(\log n)$ bits pass through each edge.

Our model: add a referee (universal vertex) u to graph G. What can/cannot be computed frugally?

- Each node knows its neighbors. One more round of communication
- u can decide if G is a tree, a planar graph...
- u cannon decide if G has a triangle or a square, if G has diameter ≤ 3

Plan of the talk

1. A model for frugal computation based on a spanning tree [Grumbach, Wu, WG '09]
2. Our (stronger) model: $G+u$

- Positive results: recognizing trees, planar graphs or any graphs of bounded degeneracy
- Negative results (in one round): triangle detection
- Negative results (arbitrary number of rounds): a teaser for communication complexity

3. Several open questions

The model of Grumbach and Wu

- Graph G has a BFS spanning tree T, each node knows its father in the tree.
- If G is of bounded degree any FOL formula ϕ can be evaluated frugally
- Gaifman normal form: $\exists x_{1}, \ldots, x_{s}$, pairwise "far away", and $\phi^{(r)}\left(x_{1}\right) \wedge \cdots \wedge \phi^{(r)}\left(x_{s}\right)$
- Each node collects the topology information in its r-neighborhood (bounded number of topologies)
- It is enough to count the isomorphism types up to some constant

The model of Grumbach and Wu

- Graph G has a BFS spanning tree T, each node knows its father in the tree.
- If G is of bounded degree any FOL formula ϕ can be evaluated frugally
- Gaifman normal form: $\exists x_{1}, \ldots, x_{s}$, pairwise "far away", and $\phi^{(r)}\left(x_{1}\right) \wedge \cdots \wedge \phi^{(r)}\left(x_{s}\right)$
- Each node collects the topology information in its r-neighborhood (bounded number of topologies)
- It is enough to count the isomorphism types up to some constant
- Similar results for planar G, using tree-decompositions of planar graphs of bounded radius.

Frugally decide if G is a forest

Actually the referee (universal vertex) u will compute the graph G.

- each vertex x sends to the referee vertex u
- its identifier x
- its degree $d_{G}(x)$
- the sum of its neighbors $\sum_{y \in N_{G}(x)} y$
- u can recognize the vertices of degree one, then "remove" them; iterate the process

Bounded degeneracy graphs

G is of degeneracy at most k if, by repeatedly removing vertices of degree $\leq k$, we end up with an empty graph.

- Forests are exactly graphs of degeneracy 1
- Planar graphs have degeneracy ≤ 5
- Graphs of treewidth k have degeneracy $\leq k$
- H-minor free graphs have bounded degeneracy

Frugally decide if G is of degeneracy at most k

Actually the universal vertex u will compute graph G.

- each vertex x sends to the special vertex u
- its identifier x
- its degree $d_{G}(x)$
- k other messages: $m_{i}(x)=\sum_{y \in N_{G}(x)} y^{i}$, for each $1 \leq i \leq k$
- u can recognize the vertices x of degree at most k

Frugally decide if G is of degeneracy at most k

Actually the universal vertex u will compute graph G.

- each vertex x sends to the special vertex u
- its identifier x
- its degree $d_{G}(x)$
- k other messages: $m_{i}(x)=\sum_{y \in N_{G}(x)} y^{i}$, for each $1 \leq i \leq k$
- u can recognize the vertices x of degree at most k
- and their neighborhoods by solving the system of k equations $X_{1}^{i}+X_{2}^{i}+\cdots+X_{d(x)}^{i}=m_{i}(x)$

Frugally decide if G is of degeneracy at most k

Actually the universal vertex u will compute graph G.

- each vertex x sends to the special vertex u
- its identifier x
- its degree $d_{G}(x)$
- k other messages: $m_{i}(x)=\sum_{y \in N_{G}(x)} y^{i}$, for each $1 \leq i \leq k$
- u can recognize the vertices x of degree at most k
- and their neighborhoods by solving the system of k equations $X_{1}^{i}+X_{2}^{i}+\cdots+X_{d(x)}^{i}=m_{i}(x)$
- then u "removes" the vertices of degree $\leq k$ and iterates the process.

In one round, one cannot decide if G has a triangle

Bipartite graph H plus a "probe node"

Triangles - part II

- Collect all messages (+ and -) for all vertices
- The red part tells whether there is an edge $a_{i} b_{j}$
- For $H \neq H^{\prime}$, these collections must be different

Triangles - part II

- Collect all messages (+ and -) for all vertices
- The red part tells whether there is an edge $a_{i} b_{j}$
- For $H \neq H^{\prime}$, these collections must be different

$O(n \log n)$ bits do not allow to distinguish $2^{\Theta\left(n^{2}\right)}$ bipartite graphs.

"Reduction" techniques for "hardness"?

We have proven: if there exists a $f(n)$-bits protocol for triangle detection in $2 n+1$-vertex graphs, then there also exists a $2 f(n)$-bits protocol reconstructing bipartite graphs with n vertices of each color.

- There is no frugal protocol detecting cycles with 4 vertices (easy reduction from Reconstruction of C_{4}-free graphs)
- There is no frugal protocol deciding if the diameter is at most 3 (very similar to triangle detection)
- Bipartitness is at least as hard as ConnectivityBip (so what? see open questions)

A straightforward consequence of comunication complexity results

- Let $G_{1}=G[1,2, \ldots, n / 2], G_{2}=G[n / 2+1, n / 2+2, \ldots, n]$
- Suppose the edges from G_{1} to G_{2} form a matching $\{i, i+n / 2\}$
- One cannot frugally decide if G_{2} is a copy of G_{1}.

A straightforward consequence of comunication complexity results

- Let $G_{1}=G[1,2, \ldots, n / 2], G_{2}=G[n / 2+1, n / 2+2, \ldots, n]$
- Suppose the edges from G_{1} to G_{2} form a matching $\{i, i+n / 2\}$
- One cannot frugally decide if G_{2} is a copy of G_{1}. Why?

A straightforward consequence of comunication complexity results

- Let $G_{1}=G[1,2, \ldots, n / 2], G_{2}=G[n / 2+1, n / 2+2, \ldots, n]$
- Suppose the edges from G_{1} to G_{2} form a matching $\{i, i+n / 2\}$
- One cannot frugally decide if G_{2} is a copy of G_{1}.

Why? Communication complexity

A straightforward consequence of comunication complexity

results

- Let $G_{1}=G[1,2, \ldots, n / 2], G_{2}=G[n / 2+1, n / 2+2, \ldots, n]$
- Suppose the edges from G_{1} to G_{2} form a matching $\{i, i+n / 2\}$
- One cannot frugally decide if G_{2} is a copy of G_{1}.

Why? Communication complexity

- Alice has a boolean vector x_{A} of size k
- Bob has a boolean vector x_{B} of size k
- How many bits must Alice and Bob exchange in order to compute some function $f\left(x_{A}, x_{B}\right)$?

A straightforward consequence of comunication complexity

results

- Let $G_{1}=G[1,2, \ldots, n / 2], G_{2}=G[n / 2+1, n / 2+2, \ldots, n]$
- Suppose the edges from G_{1} to G_{2} form a matching $\{i, i+n / 2\}$
- One cannot frugally decide if G_{2} is a copy of G_{1}.

Why? Communication complexity

- Alice has a boolean vector x_{A} of size k
- Bob has a boolean vector x_{B} of size k
- How many bits must Alice and Bob exchange in order to compute some function $f\left(x_{A}, x_{B}\right)$?
To compute $\operatorname{EQUAL}\left(x_{A}, x_{B}\right)$, they must exchange k bits [Wikipedia - Communication Complexity].

Summary

A model for frugal computation: $O(\log n)$ bits of communication per edge.

- Positive results for one round of computation: trees bounded degeneracy graphs (planar...)
- Unbounded number of rounds: one can do BFS
- Negative results (one round): local properties (triangle, square) and global properties (diameter); reduction techniques
- Negative results if the graph has an $O(n)$ edge cut

Main open question

What abous the Connectivity of G (in one or more rounds)?

- All our "reductions" may assume that the vertices are initially partitioned in a fixed number of parts (3, for TriangleDetection), and the reduction works even if vertices of a same part share their information
- This can not work for Connectivity, we need new ideas
- (Naive remark) Similar difficulties arise in multiparty communication complexity

More open questions

- Extend the negative results to any constant number of communication rounds
- Find properties which are not decidable in one round, but which are in two or more rounds (candidate: decide if a graph is made of exactly two disjoint cliques)
- Randomized setting? (We did not really think of it)

More open questions

- Extend the negative results to any constant number of communication rounds
- Find properties which are not decidable in one round, but which are in two or more rounds (candidate: decide if a graph is made of exactly two disjoint cliques)
- Randomized setting? (We did not really think of it)

Your questions?

