Physical Considerations on the Schelling model of Social segregation

Sergio Rica

Universidad Adolfo Ibáñez

In collaboration with N. Goles-Domic and E. Goles Phys Rev E 83, 056111 (2011)
occasion of the 6oth birthday of Prof. Eric

Valparaíso, nov 2011

Plan

- Introduction
- The Schelling Model
- Qualitative behavior
- Quankilakive behavior
- Discussion

The Model of Segregation by

 ShellingThomas C. Schelling (1969-1972)

- Lattice $\{i, k\}$
- State $x_{k}= \pm 1$
- Vicinity
- Tolerance threshold

Happiness threshold
An individual is unhappy if there are more than θ individuals of the other type.
eg. in a vicinity of 8 neighbors and if $\theta=5$ then:

The rule
At each step, one lists the unhappy individuals of both species, and then randomly one exchanges two individuals of opposite specie.
Remark: the number of individuals of each specie (N_{+} \$ N_{-}) are conserved.

$$
\sum_{i, k} x_{i k}=N_{+}-N_{-}=C t e
$$

$$
\theta=5
$$

8
 为

Phase diagram

Comments

- A tendency of segregation.
- A tendency of a diminution of the interfaces
- But! there is a strong frustration.
- A length scale?

Length scale for $\theta=5$

$414+2+2+1$ Hos $\rightarrow+\infty$

Case of 44 neighbors

Case of 68 neighbors

Summary

8 neighbors

44 neighbors

68 neighbors

Quanlilalive behavior

For 8 neighbors and, if $\theta=5$ and higher, then the "energy"

$$
E[\{x\}]=-\frac{1}{2} \sum_{k=1}^{N} x_{k} \sum_{i \in V_{k}} x_{i}
$$

decreases strictly during the evolution.
Moreover, $\Delta E_{k l} \leq 4\left(w_{k l}+8-2 \theta\right)$
where $w_{k l} \leq 1$

Ceomelrical incerprelalion

$$
\left.\begin{array}{rl}
E[\{x\}] & =-\frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_{k}} 1+\frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_{k}}\left(1-x_{k} x_{i}\right) \\
& =-\frac{1}{2} 8 N+\frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_{k}}\left(1-x_{k} x_{i}\right)
\end{array}\right\} \begin{aligned}
E & =-4 N+2 \times\left(3 \sum \text { edges }-\sum \text { corners }\right) \\
& =-4 N+2 \times(3 \times \text { perimeter }- \text { Nb. of corners }),
\end{aligned}
$$

Few Consequences

- Because the energy is bounded $-4 N \leq E \leq 4 N$ the dynamics is of finite time for $\theta=5$ and higher.
- For $\theta \leq 3$ the dynamics continues indefinitely
- The case $\theta=4$ may posses a complex dynamics
- The energy ground state.

Phase diagram

Evs lime

E vs lime

Discussion

- Variants on the model and generalizations (graphs, non uniform tolerance, various states, protocols...)
- QR
- Segregation in higher dimensions?

Segregation in 3D

