Physical Considerations on Ehe Schelling model of Social Segregation

Sergio Rica

Universidad Adolfo Ibáñez

In collaboration with N. Goles-Domic and E. Goles Phys Rev <u>E 83,</u> 056111 (2011)

On the occasion of the 60th birthday of Prof. Eric Goles

Valparaíso, nov 2011

Supported by grant COSTUME, ANR SYSCOM (France)

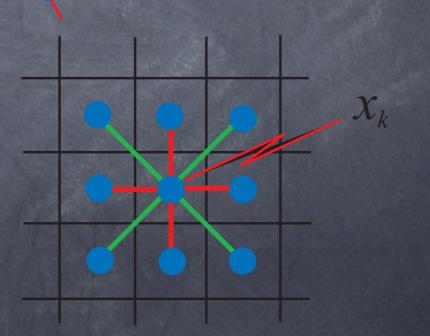
Plan

- @ Introduction
- @ The Schelling Model
- @ Qualitative behavior
- @ Quantitative behavior
- @ Discussion

The Model of Segregation by Shelling Thomas C. Schelling (1969 - 1972)

 X_{k}

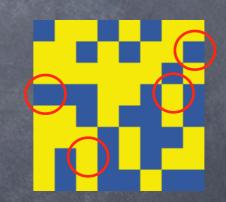
- State $x_{k} = \pm 1$
- @ Vicinity
- © Tolerance Ehreshold



Happiness Ehreshold

An individual is unhappy if there are more than θ individuals of the other type.

eg. in a vicinity of 8 neighbors and if $\theta = 5$ then:

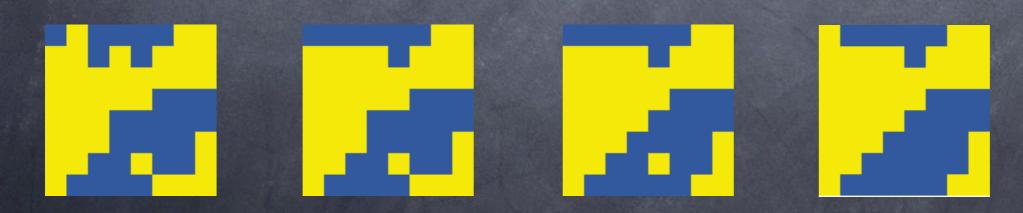


The Tulle

At each step, one lists the unhappy individuals of both species, and then randomly one exchanges two individuals of opposite specie.

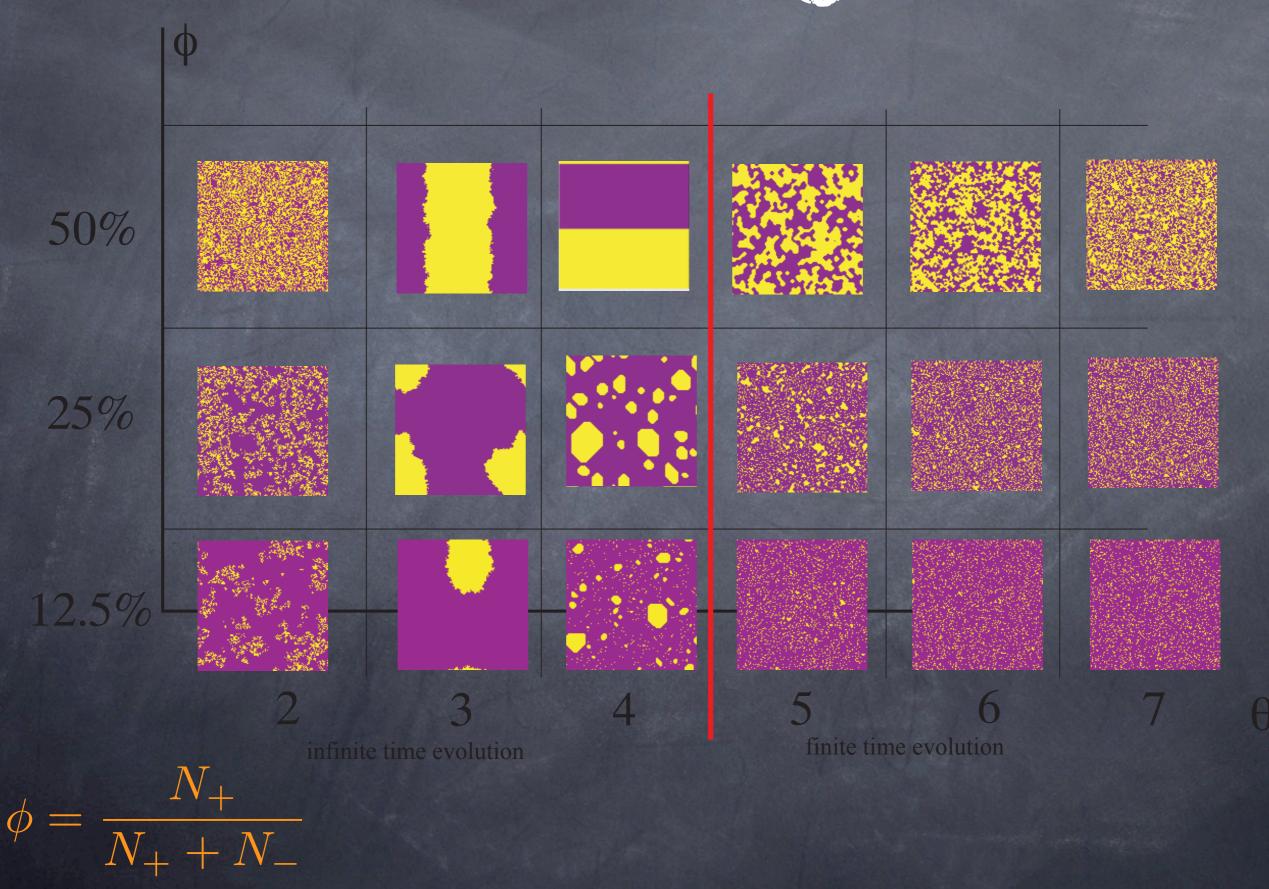
Remark: the number of individuals of each specie (N+ & N-) are conserved.

 $\sum x_{ik} = N_+ - N_- = Cte$ i,k



 $\theta = 5$

Phase diagram

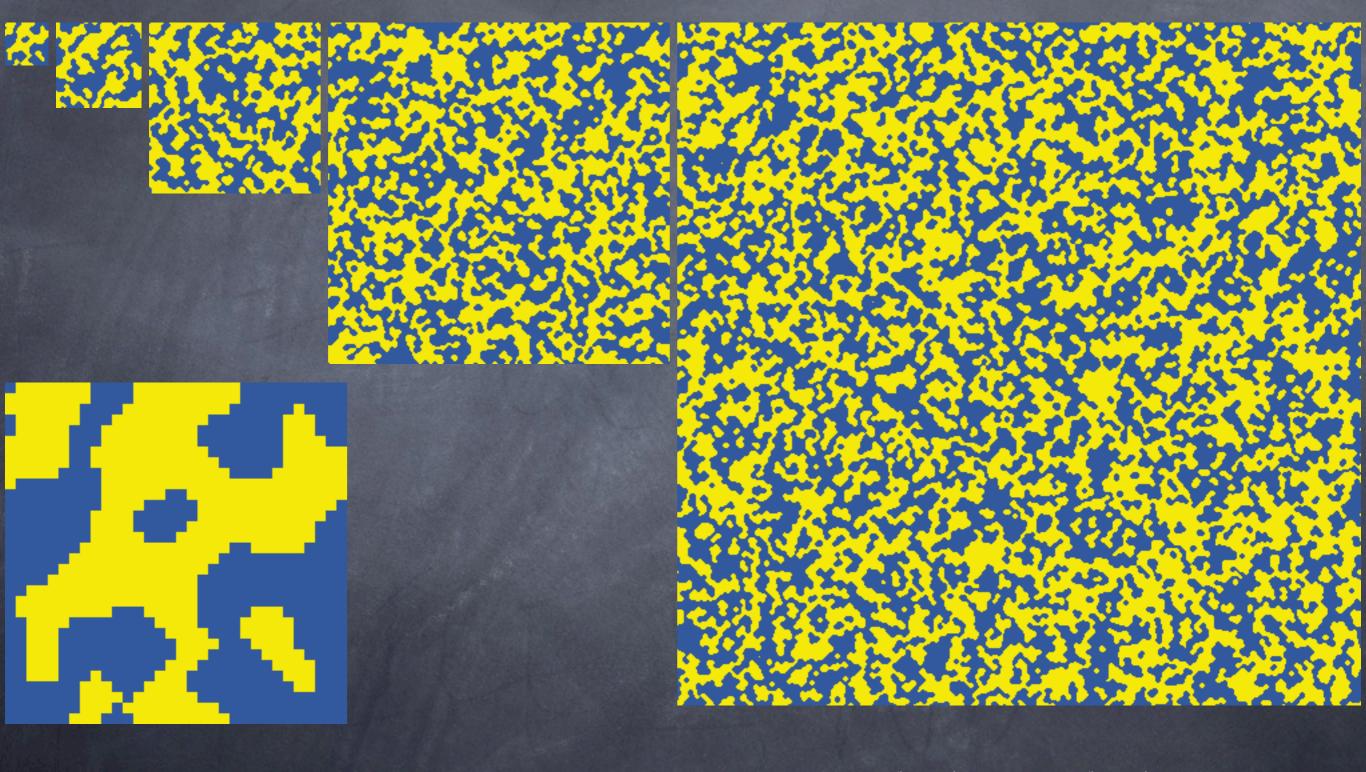


Commence

A tendency of segregation.
A tendency of a diminution of the interfaces
But! there is a strong frustration.

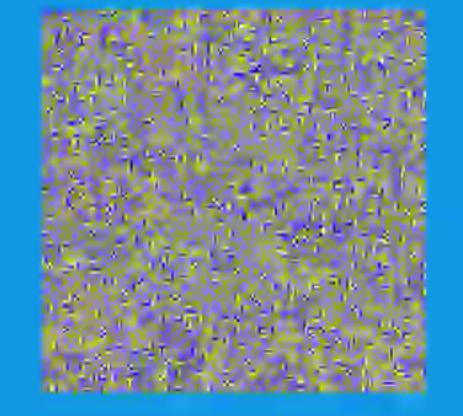
@ A length scale ?

Length scale for $\theta = 5$

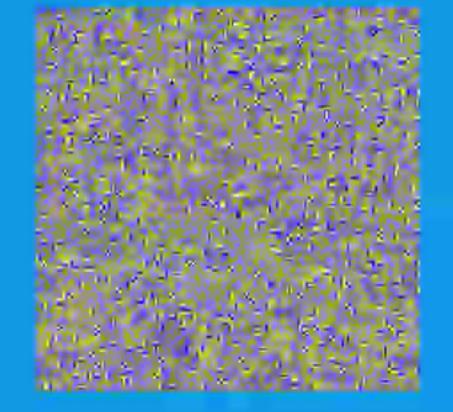


32 × 32 64 × 64128 × 128 256 × 256

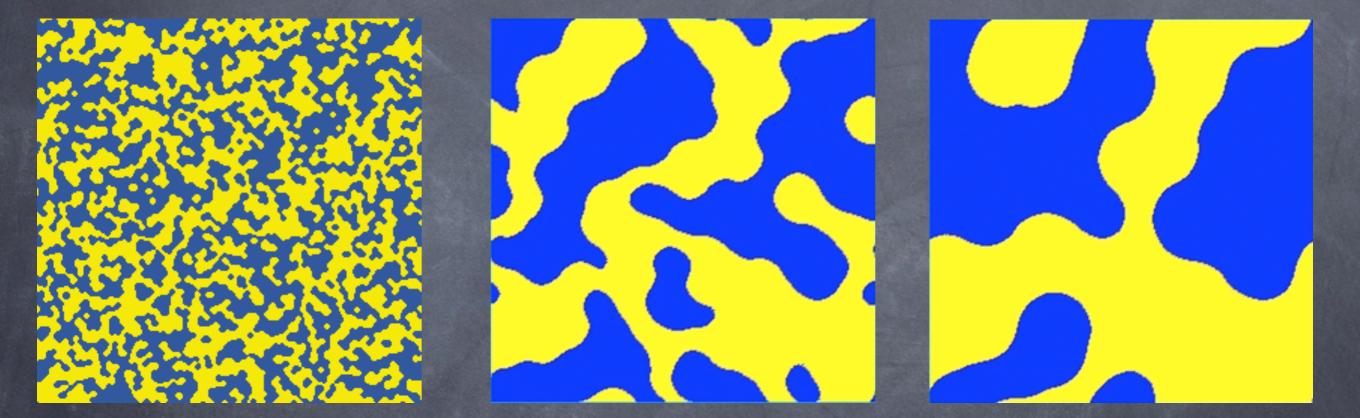
512 × 512



Case of 44 neighbors



Case of 68 neighbors



8 neighbors

44 neighbors

68 neighbors

Quantitative behavior

For 8 neighbors and, if $\theta = 5$ and higher, then the "energy"

$$E[\{x\}] = -\frac{1}{2} \sum_{k=1}^{N} x_k \sum_{i \in V_k} x_i$$

decreases strictly during the evolution. Moreover, $\Delta E_{kl} \leq 4\left(w_{kl}+8-2 heta
ight)$ where $w_{kl} \leq 1$

Geometrical interpretation

$$E[\{x\}] = -\frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_k} 1 + \frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_k} (1 - x_k x_i)$$

$$= -\frac{1}{2}8N + \frac{1}{2}\sum_{k=1}^{N}\sum_{i\in V_{k}}(1 - x_{k}x_{i})$$

$E = -4N + 2 \times \left(3 \sum \text{edges} - \sum \text{corners}\right)$

 $= -4N + 2 \times (3 \times \text{perimeter} - \text{Nb. of corners}),$

Few Consequences

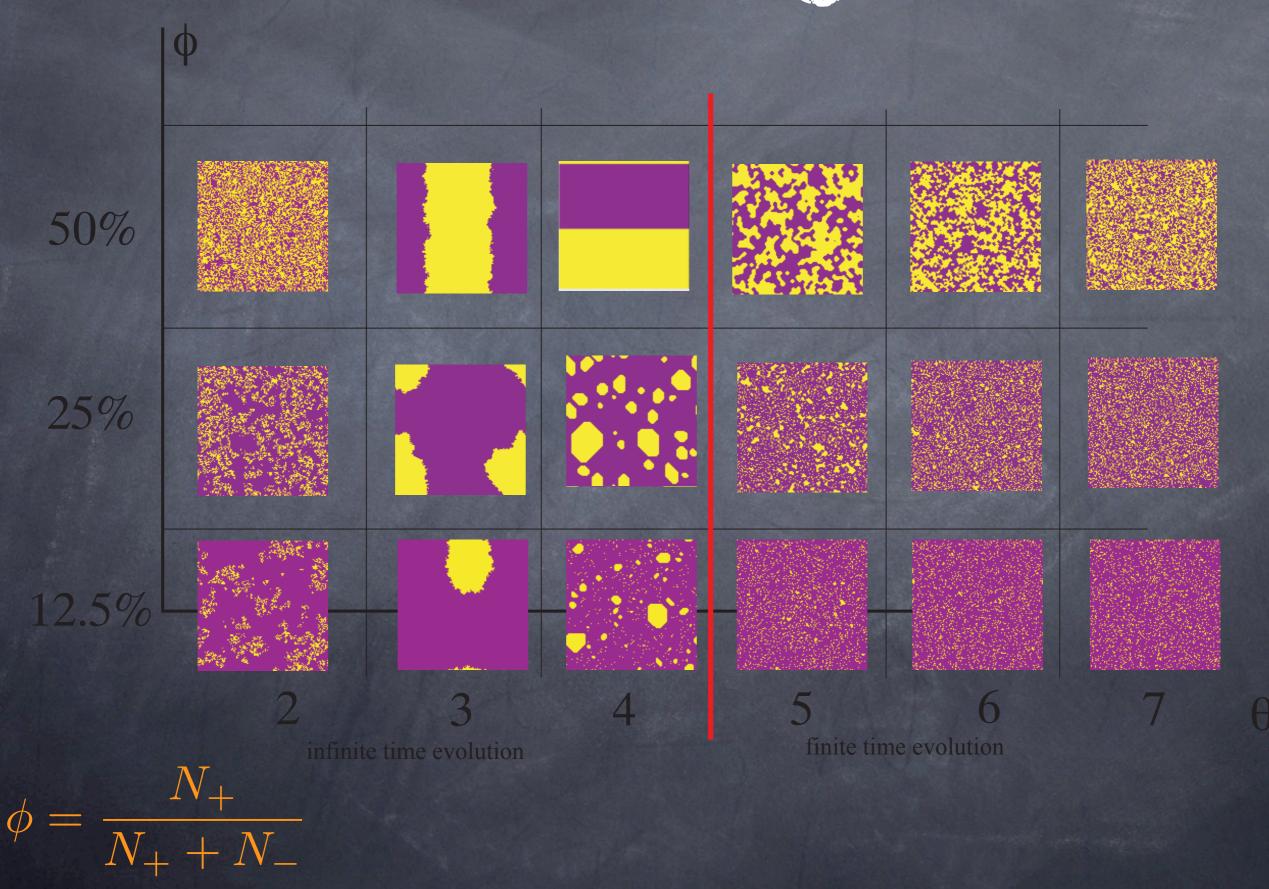
Secause the energy is bounded
-4 N ≤ E ≤ 4 N the dynamics is
of finite time for $\theta = 5$ and
higher.

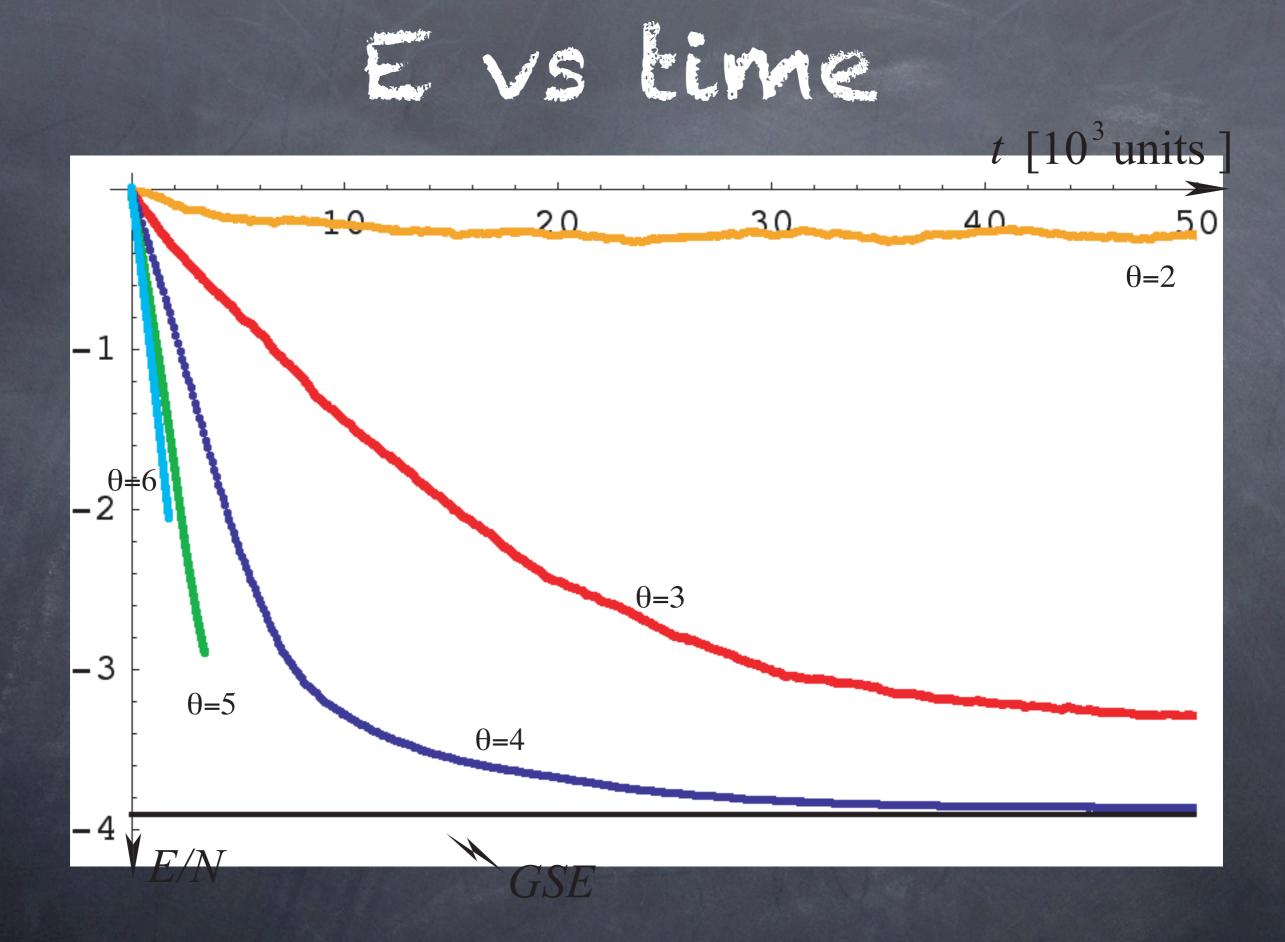
 σ For $\theta \leq 3$ the dynamics continues indefinitely

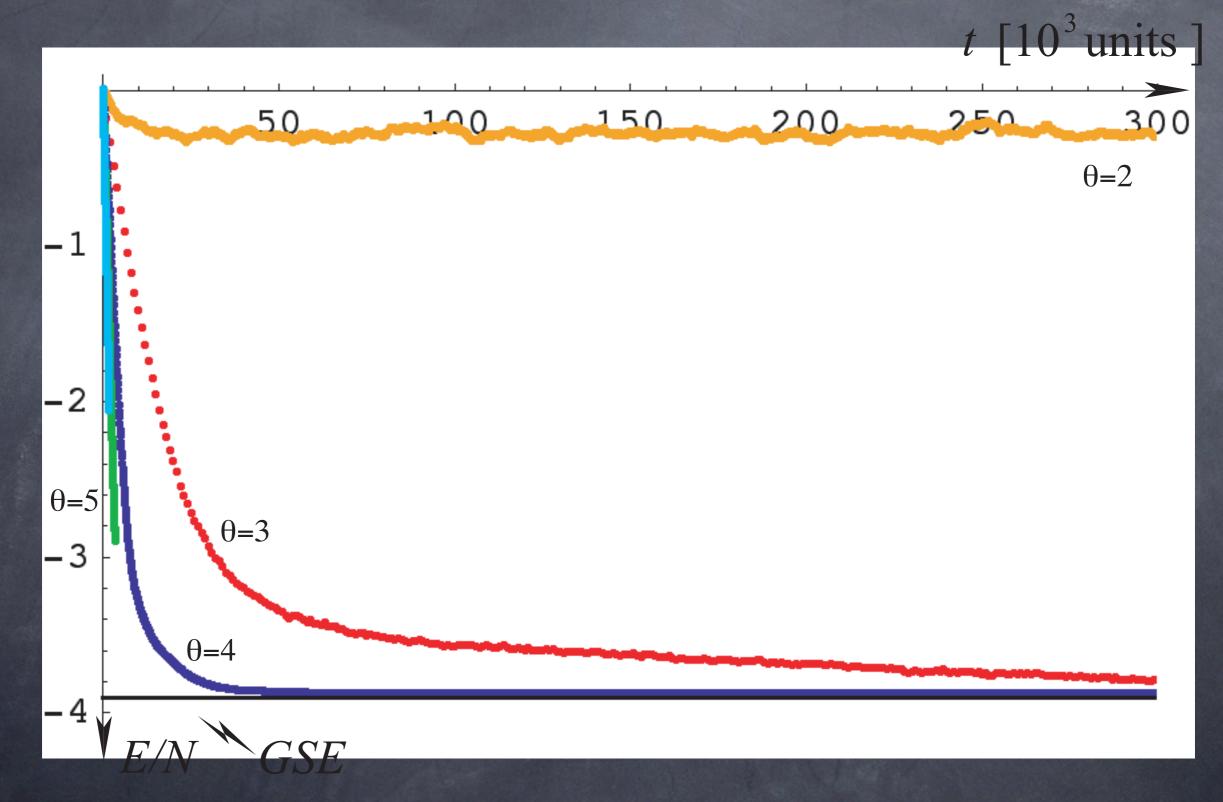
The case $\theta = 4$ may posses a complex dynamics

The energy ground state.

Phase diagram







Discussion

Variants on the model and generalizations (graphs, non uniform tolerance, various states, protocols...)

0 Q2R

Segregation in higher dimensions ?

segregation in 30

