#### Physical Considerations on Ehe Schelling model of Social Segregation

Sergio Rica

Universidad Adolfo Ibáñez

In collaboration with N. Goles-Domic and E. Goles Phys Rev <u>E 83,</u> 056111 (2011)

On the occasion of the 60th birthday of Prof. Eric Goles

Valparaíso, nov 2011

Supported by grant COSTUME, ANR SYSCOM (France)

## Plan

- @ Introduction
- @ The Schelling Model
- @ Qualitative behavior
- @ Quantitative behavior
- @ Discussion

#### The Model of Segregation by Shelling Thomas C. Schelling (1969 - 1972)

 $X_{k}$ 

- State  $x_{k} = \pm 1$
- @ Vicinity
- © Tolerance Ehreshold



# Happiness Ehreshold

An individual is unhappy if there are more than  $\theta$  individuals of the other type.

eg. in a vicinity of 8 neighbors and if  $\theta = 5$ then:



### The Tulle

At each step, one lists the unhappy individuals of both species, and then randomly one exchanges two individuals of opposite specie.

Remark: the number of individuals of each specie (N+ & N-) are conserved.

 $\sum x_{ik} = N_+ - N_- = Cte$ i,k

# 



 $\theta = 5$ 

Phase diagram



#### Commence

A tendency of segregation.
A tendency of a diminution of the interfaces
But! there is a strong frustration.

@ A length scale ?

#### Length scale for $\theta = 5$



32 × 32 64 × 64128 × 128 256 × 256

512 × 512







#### Case of 44 neighbors







#### Case of 68 neighbors





8 neighbors

44 neighbors

68 neighbors

## Quantitative behavior

For 8 neighbors and, if  $\theta = 5$  and higher, then the "energy"

$$E[\{x\}] = -\frac{1}{2} \sum_{k=1}^{N} x_k \sum_{i \in V_k} x_i$$

decreases strictly during the evolution. Moreover,  $\Delta E_{kl} \leq 4\left(w_{kl}+8-2 heta
ight)$ where  $w_{kl} \leq 1$ 

#### Geometrical interpretation

$$E[\{x\}] = -\frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_k} 1 + \frac{1}{2} \sum_{k=1}^{N} \sum_{i \in V_k} (1 - x_k x_i)$$

$$= -\frac{1}{2}8N + \frac{1}{2}\sum_{k=1}^{N}\sum_{i\in V_{k}}(1 - x_{k}x_{i})$$

#### $E = -4N + 2 \times \left(3 \sum \text{edges} - \sum \text{corners}\right)$

 $= -4N + 2 \times (3 \times \text{perimeter} - \text{Nb. of corners}),$ 

## Few Consequences

Secause the energy is bounded
-4 N ≤ E ≤ 4 N the dynamics is
of finite time for  $\theta = 5$  and
higher.

 $\sigma$  For  $\theta \leq 3$  the dynamics continues indefinitely

The case  $\theta = 4$  may posses a complex dynamics

The energy ground state.

Phase diagram









#### Discussion

Variants on the model and generalizations (graphs, non uniform tolerance, various states, protocols...)

0 Q2R

Segregation in higher dimensions ?

## segregation in 30

