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The factors of length ≤ 5 of the Fibonacci word x = abaababa . . .
fixpoint of a 7→ ab, b 7→ a.
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A miracle

Consider the maximal bifix code of degree 3 below.
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Let F be the set of factors of the Fibonacci word The set X ∩ F

(red nodes) has 4 elements.
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Consider the maximal bifix code of degree 3 below.
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Let F be the set of factors of the Fibonacci word The set X ∩ F

(red nodes) has 4 elements.
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Second miracle

Consider the group code of degree 3 below (a 7→ (123), b 7→ (12)).
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The intersection with F is the same as the previous one.
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Outline

We show that

in a Sturmian set F , any finite F -maximal bifix code of degree
d on k letters has (k − 1)d + 1 elements (Cardinality
Theorem).
if an infinite word x is such that Card(F (x)∩X ) ≤ d for some
finite maximal bifix code X of degree d , then x is ultimately
periodic (Periodicity Theorem).
in a Sturmian set, any finite F -maximal bifix code of F -degree
d is a basis of a subgroup of index d of the free group on A

and conversely (Sturmian Basis Theorem).

Based on Bifix codes and Sturmian words, by Jean Berstel, Clelia
De Felice, Dominique Perrin, Christophe Reutenauer, Giuseppina
Rindone (BDPRR, 2010).
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Sturmian sets

Given a set F of words over an alphabet A, the right order of a
word u in F is the number of letters a such that ua ∈ F . A word u

is right-special if its right order is at least 2. A right-special word is
strict if its right order is equal to Card(A).
A set of words F is Sturmian if it is the set of factors of an infinite
word and if

it is closed under reversal
it contains, for each n ≥ 1, exactly one right-special word u of
length n which is moreover strict.

It is easy to see that for a Sturmian set F on an alphabet A with k

letters, the set F ∩ An has (k − 1)n + 1 elements for each n.
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Example

Set A = {a, b}. The Fibonacci set is the set of factors of the
inifinite word

x = abaababaabaababaababaabaababaabaab · · ·

called the Fibonacci word. It is the fixpoint f ω(a) of the morphism
f : A∗ → A∗ defined by f (a) = ab and f (b) = a.

Example

Set A = {a, b, c}. The morphism f : A∗ → A∗ defined by
f (a) = ab, f (b) = ac and f (c) = a has the fixpoint

x = abacabaabacababacabaabacabacabaabacab · · ·

called the Tribonacci word. The set F (x) is Sturmian.
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Bifix codes

A set X of nonempty words is a prefix code if any two distinct
elements of X are incomparable for the prefix order.

Example

The set X = {a, ba} is a prefix code.

A set X of nonempty words is a bifix code if any two distinct
elements of X are incomparable for the prefix order and for the
suffix order.

Example

The set X = {a, bab} is a bifix code.
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Maximal bifix codes

A prefix code (resp. a bifix code) X ⊂ F is F -maximal if it is not
properly contained in any other prefix code (resp. bifix code)
Y ⊂ F .

Example

Let A = {a, b} and let F be the set of words without factor bb .
The set X = {aaa, aaba, ab, baa, baba} is a finite F -maximal bifix
code.
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Parses

A parse of a word w with respect to a set X is a triple (s, x , p)
such that w = sxp with

s has no suffix in X ,
x ∈ X ∗

p has no prefix in X

s x p

Example

The set X = {a, bab} is a finite bifix code. The parses of the word
bab are (1, bab, 1) and (b, a, b). Thus πX (bab) = 2.
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Degree of a bifix code

Let X be a bifix code. For any word w and any letter a ∈ A

The F -degree, denoted dF (X ), of a bifix code X is the maximum
of the number of parses of the words of F .

Theorem (Schützenberger, 1965)

Let F be a recurrent set and let X ⊂ F be a finite bifix code. Then

X is an F -maximal bifix code if and only if its F -degree is finite.
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Example

Let F be the Fibonacci set. The set X = {a, bab, baab} is an
F -maximal bifix code of degree 2. The parses of bab are (1, bab, 1)
and (b, a, b).

Example

Let F be the Fibonacci set. The set X = {aaba, ab, baa, baba} is
an F -maximal bifix code of degree 3. The word aaba has three
parses (1, aaba, 1), (a, ab, a) and (aa, 1, ba).
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The Cardinality Theorem

The following result generalizes the fact that a Sturmian word has
d + 1 factors of length d .

Theorem (BDPRR, 2010)

Let F be a Sturmian set on an alphabet with k letters. For any

finite F -maximal bifix code X ⊂ F , one has

Card(X ) = (k − 1)dF (X ) + 1.
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Let x = a0a1 · · · , with ai ∈ A, be an infinite word. It is periodic if
there is an integer n ≥ 1 such that ai+n = ai for all i ≥ 0.
It is ultimately periodic if the equalities hold for all i large enough.
Thus, x is ultimately periodic if there is a word u and a periodic
infinite word y such that x = uy . The following result, due to
Coven and Hedlund, is well-known.

Theorem (Coven and Hedlund, 1973)

Let x ∈ AN be an infinite word. If there exists an integer d ≥ 1
such that x has at most d factors of length d then x is ultimately

periodic.
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The Periodicity Theorem

The following statement implies the Coven-Hedlund Theorem since
Ad is a maximal bifix code of degree d .

Theorem (BDPRR, 2010)

Let x ∈ AN be an infinite word. If there exists a finite maximal bifix

code X of degree d such that Card(X ∩ F (x)) ≤ d, then x is

ultimately periodic.

The proof uses the Critical Factorization Theorem.
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Consider the maximal bifix code of degree 3 below.
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Consider the maximal bifix code of degree 3 below.
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Assume that X ∩ F (x) is the set of red nodes. Then a factor aab

can only be followed by a second aab. Thus x = u(aab)ω.
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Sturmian Basis Theorem

Theorem (BDPRR, 2010)

Let F be a Sturmian set and let d ≥ 1 be an integer. A bifix code

X ⊂ F is a basis of a subgroup of index d of A◦ if and only if it is

a finite F -maximal bifix code of F -degree d.

Note that this contains the Cardinality Theorem. Indeed, by
Schreier’s formula, if H is a subgroup of rank n and index d of a
free group of rank k, then

n − 1 = d(k − 1)

Let X be a F -maximal bifix code of F -degree d . By the above
theorem, it is a basis of a subgroup of index d of the free group A◦

which has rank k. Thus Card(X ) = (k − 1)d + 1 by Schreier’s
formula.
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Before proving the Sturmian Basis Theorem, we list some
corollaries.

Corollary

Let F be a Sturmian set. For any n ≥ 1, the set F ∩ An is a basis

of the subgroup of A◦ generated by An.

Direct proof : show by descending induction on i = d , . . . , 0 that
for any u ∈ F ∩Ai , one has uAd−i ⊂ 〈X 〉. It is true for i = d . Next
consider a right-special word u ∈ F ∩ Ai . By induction hypothesis,
we have uaAd−i−1 ⊂ 〈X 〉 for any a ∈ A. Thus uAd−i ⊂ 〈X 〉. For
another v ∈ Ai , let w be such that vw ∈ F ∩ Ad . Then
vt = vw(uw)−1ut for any t ∈ Ad−i .

Example

Let F be the Fibonacci set. We have F ∩ A2 = {aa, ab, ba} and
bb = ba(aa)−1ab.
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The following corollary contains the well-known fact that a
subgroup of finite index of a free group has a positive basis.

Corollary

Let F be a Sturmian set. Any subgroup of finite index of the free

group on A has a basis contained in F .

Let indeed H be a subgroup of index d of A◦. Let Z be the bifix
codes which generates the submonoid H ∩ A∗. Then Z is a
maximal bifix code of degree d . The set X = Z ∩ F is an
F -maximal bifix code of degree e ≤ d . By the Sturmian Basis
Theorem, it is the basis of a subgroup K of index e. But then
K ⊂ H implies that d divides e. Thus d = e and H = K .
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As a further consequence of the Sturmian Basis Theorem, we have
the following result.

Corollary

Let F be a Sturmian set on an alphabet with k letters. The

number Nd,k of finite F -maximal bifix codes X ⊂ F of F -degree d

satifies N1,k = 1 and

Nd,k = d(d !)k−1 −
d−1∑

i=1

[(d − i)!]k−1Ni ,k .
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The formula results directly from the formula, due to Hall (1949),
for the number of subgroups of index d in a free group of rank k.
The values for k = 2 are given by the recurrence

Nd,2 = d d ! −

d−1∑

i=1

(d − i)!Ni ,2.

The first values are

d 1 2 3 4 5 6 7 8 9 10

Nd,2 1 3 13 71 461 3447 29093 273343 2829325 31998903

The formula is known to enumerate also the indecomposable
permutations on d + 1 elements (see Dress, Franz 1985, Ossona,
Rosenstiehl 2004 and Cori 2009).
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An F -maximal bifix code of F -degree 3.
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Stallings foldings
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Fusion of 5, 6, 7.

Dominique Perrin Combinatorics on Sturmian words



Sturmian sets
Bifix codes

Sturmian sets and bifix codes

Cardinality Theorem
Periodicity Theorem
Sturmian Basis Theorem

Stallings foldings
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Fusion of 4, 5.
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Stallings foldings
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Fusion of 2, 3.
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Stallings foldings
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a 7→ (125), b 7→ (12).
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Some preliminary results are used in the proof of the Sturmian
Basis Theorem.
The first one is a closure property of the set X ∗ ∩ F .

Proposition

Let F be a Sturmian set and let X ⊂ F be a finite F -maximal bifix

code. Then 〈X 〉 ∩ F = X ∗ ∩ F .
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The incidence graph

Let X be a bifix code, let P be the set of its proper prefixes and S

be the set of its proper suffixes. Set P ′ = P \ 1 and S ′ = S \ 1.
The incidence graph of X is the undirected graph G defined as
follows. The set of vertices is V = 1 ⊗ P ′ ∪ S ′ ⊗ 1.
The edges of G are the pairs (1 ⊗ p, s ⊗ 1) and (s ⊗ 1, 1 ⊗ p), for
p ∈ P ′ and s ∈ S ′, such that ps ∈ X .
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Consider the F -maximal bifix code of F -degree 3 in the Fibonacci
set F given below.
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babaabaaba b

babaabaab ab

babaabaa bab

babaaba aab

babaab abab

babaa aabab

baba baabab

bab abaabab

baa aabaabab

ba baabaabab

b abaabaabab

Fig.: The incidence graph of X .
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Lemma

Let F be a Sturmian set and let X ⊂ F be a bifix code. Let P ′ be

the set of nonempty proper prefixes of X and let G be the

incidence graph of X . The trace on P ′ of a connected component

of G is a suffix code.
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Consider the code X of the previous example. The two suffix-codes
which are the traces of the incidence graph on the set of nonempty
proper prefixes of X are shown below.
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Fig.: The two suffix codes which are classes of the equivalence θX .
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For the previous code X , the automaton induced on the classes has
three states. State 2 is the class containing b, and state 3
represents the class containing ba.

1 2 3

b

b

a

a

a b
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Return words

Let F be a factorial set. For u ∈ F , define

ΓF (u) = {z ∈ F | uz ∈ A+u ∩ F}

and
RF (u) = ΓF (u) \ ΓF (u)A+.

When F = F (x) for an infinite word x , the sets ΓF (u) and RF (u)
are respectively the set of right return words to u and first right
return words to u in x .

Dominique Perrin Combinatorics on Sturmian words



Sturmian sets
Bifix codes

Sturmian sets and bifix codes

Cardinality Theorem
Periodicity Theorem
Sturmian Basis Theorem

Example

Let F be the Fibonacci set. The set RF (u) is given below for the
first words of F .

u 1 a b aa ab ba

RF (u) a, b a, ba ab, aab baa, babaa ab, aab ba, aba

The following result is used in the proof.

Theorem (Justin and Vuillon, 2000)

Let F be a Sturmian set. For any word u ∈ F , the set RF (u) is a

basis of the free group A◦.
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Example

Let F be the set of factors of the Fibonacci word. Let X be the
F -maximal bifix code of F -degree 4 shown on the figure. The four
classes are indicated in colors.
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The representation of A◦ on the cosets of the subgroup generated
by X is shown below.

1 a

aba ba

a

a

bb bb

a

a

Fig.: The group Z/2Z × Z/2Z.
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