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Talk Overview – Dynamics Groups

I Using tools from group theory to assess long-term dynamics of asynchronous discrete
dynamical systems.

The notion of update sequence independence.

The dynamics group of an update sequence independent system.

Relations to Coxeter theory and Coxeter groups.

Outlook and open questions.
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Sequential Dynamical Systems (SDS)

I A subclass of graph dynamical systems (GDS). Constructed from:

A (dependency) graph X with vertex set v[X ] = {1, 2, . . . , n}.
For each vertex v a state xv ∈ K (e.g. K = F2 = {0, 1}) and
an X-local function Fv : Kn −→ Kn

Fv (x1, x2, . . . , xn) = (x1, . . . , fv (x[v ])| {z }
vertex function v

, , . . . , xn) .

A word w = w1w2 · · ·wk over the vertex set of X .
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n[4]=(3,4,5,8)1 3
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4 f4(x3, x4, x5, x8)

I The SDS map Fw : Kn −→ Kn is:

Fw = Fw(k) ◦ Fπ(k−1) ◦ · · · ◦ Fw(1)
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SDS – An example

I System components:

Circle graph on 4 vertices: X = Circle4

Update sequence: π = (1, 2, 3, 4)

Vertex functions:

nor3(x1, x2, x3) = (1 + x1)(1 + x2)(1 + x3)

The X -local map for vertex 1:

F1(x1, x2, x3, x4) = (nor3(x1, x2, x4), x2, x3, x4)

I System update:

(x1, x2, x3, x4) = (0, 0, 0, 0)
F17→ (1, 0, 0, 0) and

(1, 0, 0, 0)
F27→ (1, 0, 0, 0)

F37→ (1, 0, 1, 0)
F47→ (1, 0, 1, 0)

I SDS map:

Fπ(0, 0, 0, 0) = (1, 0, 1, 0)
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Introduction
Basic Properties
The Dynamics Group
Coxeter Groups
Dynamics Groups over Circlen

Definition (Update sequence independence)

A sequence F = (Fi )
n
i=1 of X -local maps over a finite state space Kn are word (resp.

permutation) update sequence independent, if there exists P ⊂ Kn such that for all fair words
w ∈ W ′

X (resp. w ∈ SX ) we have
Per(Fw ) = P .

I We usually just say that F = (Fi )i is π-independent or w -independent.

I Clearly, word independence implies permutation independence; the converse is false.

I Questions:

Are there word independent SDSs, and is this a common property?

Why should we care about this in the first place?
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Properties of π-independent SDS

Proposition

Let X be a graph and F = (Fi )i a π-independent sequence of X-local functions with periodic
points P. Then each restricted function

Fi |P : P −→ P

is a well-defined bijection.

Proof.

I Let π be a permutation with π(1) = i , let P = Per(Fπ) and P′ = Per(Fσ1(π)) [cyclic 1-shift].

I We have that Fi |P : P −→ Fi (P) is a bijection.

I From Fπ(1) ◦ Fπ = Fσ1(π) ◦ Fπ(1) it follows that Fi (P) ⊂ P′.

I Repeated application of this n times yields |P| = |P′|.

I Upshot: Fi (P) = P′ and by π-independence we have P = P′.
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Dynamics Group – A first look

I For π-independent SDS each Fi |P is a permutation P.

I We set
F∗i := Fi |P

I If |P| = m and we label the periodic points 1, 2, . . . , m, then each F∗i ↔ ni ∈ Sm.

Definition (Dynamics group)

Let K be a finite set and F = (Fi )i be a π-independent sequence of X -local functions. The
dynamics group of F is

G(F) = 〈F∗1 , . . . , F∗n 〉 .

I Clearly, G(F) is isomorphic to a subgroup of Sm.

I Sometimes more convenient to consider the group generated by the permutations ni – it is
denoted by eG(F).
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An Example of w -Independence

Proposition

SDS induced by Nor-functions are w-independent for any graph X.

Proof idea.

Establish a 1-1 correspondence between Per(Norw ) and the set of independent sets of X . Of
course, the latter quantity does not depend on w .
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Example (brute force)

Take X = K3 (complete graph on 3 vertices) and F = Nor = (Nori )i .

Periodic point Label Nor1 Nor2 Nor3
(0, 0, 0) 0 (1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 0, 0) 1 (0, 0, 0) (1, 0, 0) (1, 0, 0)
(0, 1, 0) 2 (0, 1, 0) (0, 0, 0) (0, 1, 0)
(0, 0, 1) 3 (0, 0, 1) (0, 0, 1) (0, 0, 0)

Permutation repr. n1 = (0, 1) n2 = (0, 2) n3 = (0, 3)

I Clearly, eG(Nor) < S4. From n3n2n1 = (0, 1, 2, 3), and the fact that
S4 = 〈{(0, 1), (0, 1, 2, 3)}〉 it follows that S4 < G(Nor).

I Hence G(Nor) ∼= S4.

I Significance: We can organize the periodic points in any cycle configuration we like by a
suitable choice of update sequence w .
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How common is π-independence?

Theorem (Theorem [1])

For SDS over X = Circlen, precisely 104 of the 256 elementary cellular automaton rules induce
sequences (Fi )i that are π-independent for any n ≥ 3. Of these, 86 are w-independent for any
n ≥ 3.

I Thus, roughly 40% of ECA SDS over Circlen are π-independent.

I Currently, it is unclear how this generalizes to other graph classes.

I The following classes have been analyzed more generally:

Invertible SDS are (of course) w -independent.

Nor-SDS, Nand-SDS, (Nor + Nand)-SDS, threshold SDS, and trivial SDS are all
w -independent.

SDS with monotone functions are not necessarily w -independent (example, ECA rule 240).
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π-independence does not imply w -independence

I Example due to Kevin Ahrendt and Collin Bleak.

I Take X = Circlen and let F be induced by ECA 32 which has function table

(xi−1, xi , xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 0 0 0 0 0

I Claim: Per(F32
π ) = {0} for any permutation π ∈ SX .

I The state x = 0 is the only fixed point (use local fixed point graph).

I Non-isolated 0-blocks will persist and grow by each application of F32 since

. . . 100|{z}
→0

00

→0z}|{
001 . . . ,

and

. . . 10000

→0z}|{
011 . . . and . . . 10000

→0z}|{
010 . . .
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π-independence does not imply w -independence - cont.

I A state x ∈ Fn
2 where each 0-block is isolated will eventually map to a state containing a

non-isolated zero-block. Consider the the configuration . . . 101 . . . around vertex i .

Case 1: if i − 1 <π i or i + 1 <π i then a non-isolated 0-block is created immediately.

Case 2: if i <π i − 1 then a 0-block of length ≥ 2 appears after two iterations. Here it is crucial
that π is a permutation and not a fair word.

I However, F32 is not w -independent: take x = (1, 1, . . . , 1) and update sequence
w = (1, 1, 2, 2, . . . , n, n).

I Observation:

If (Fi )i is π-independent with periodic points P then there may be states in Kn \P that are
“locally periodic”: Fi applied to x two or more times in succession gives x .

Can still form the dynamics group, but in this case it only gives information about the
points in P (the “permutation periodic” points).
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Relations to Coxeter Theory

I A (finitely generated) Coxeter group with generating set S = {s1, . . . , sn} and symmetric
Coxeter matrix M = [mij ]ij where mij ∈ N ∪ {∞} and mij = 1 iff i = j is the group with
presentation

W (S) = 〈s1, . . . , sn|(si sj )mij 〉 .

I Every group G generated by a finite set of involutions can therefore be viewed as a quotient of
a Coxeter group. One defines mij to be the order of the product of the corresponding generators.

I Artin groups

Theorem

If F = (Fi )i is π-independent and K = {0, 1}, then each F∗i is either trivial or an involution. As
a result, G(F) is either trivial or a quotient of a Coxeter group.
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Relations to Coxeter Theory

I A (finitely generated) Coxeter group with generating set S = {s1, . . . , sn} and symmetric
Coxeter matrix M = [mij ]ij where mij ∈ N ∪ {∞} and mij = 1 iff i = j is the group with
presentation

W (S) = 〈s1, . . . , sn|(si sj )mij 〉 .

I Every group G generated by a finite set of involutions can therefore be viewed as a quotient of
a Coxeter group. One defines mij to be the order of the product of the corresponding generators.

I Artin groups

Theorem

If F = (Fi )i is π-independent and K = {0, 1}, then each F∗i is either trivial or an involution. As
a result, G(F) is either trivial or a quotient of a Coxeter group.
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Orders of F ∗
i ◦ F ∗

j for X = Circlen

I Let X = Circlen and consider induced sequences (Fi )i . What are the possible values for mij ,
the order of F∗i ◦ F∗j ?

I Clearly, i and j must differ by 1 for this to be interesting. Since F∗i+1 ◦ F∗i may only change
the states xi and xi+1, and since there are only four sub-configuration for these, we see that any
x ∈ P under F∗i+1 ◦ F∗i must have period 1 ≤ p ≤ 4.

I The order F∗i+1 ◦ F∗i must be a divisor of 12. As shown in [2], all possible divisors of 12 are
realized.

Example (mi,i+1 in the case of the parity function)

i − 1 i i + 1 i + 2
0 xi−1 xi xi+1 xi+2

1 xi−1 xi−1 + xi + xi+1 xi−1 + xi + xi+2 xi+2

2 xi−1 xi−1 + xi+1 + xi+2 xi + xi+1 + xi+2 xi+2

3 xi−1 xi xi+1 xi+2

and conclude that mi,i+1 = 3. (Actually, we computed the order of Fi+1 ◦Fi . Why is that okay?)
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Theorem

Let (Fi )i be π-independent with periodic points P. Then: (i) G(F) = 1 if and only if all x ∈ P
are fixed points. (ii) If G(F) acts transitively on P and p is a prime dividing |P|, then there
exists a word w ∈ W such that (a) |Fix(Fw )| is divisible by p, and (b) all periodic orbits of
length ≥ 2 of Fw have length p.

Proof.

I The dynamics group is trivial if and only if each generator is trivial which happens precisely
when every periodic point is a fixed point.

I Let x ∈ P. For a finite group acting on a set X we always have |Gx | = [G : Gx ] = |G |/|Gx |
where Gx = {φ ∈ G |φ(x) = x}. Since the action is assumed to be transitive, we conclude that
Gx = P and derive

|G | = |P||Gx | ,

and thus that p divides |G |. By Cauchy’s Theorem, it follows that G has a subgroup of order p,

and this subgroup is cyclic with generator φ =
Q

i F
∗
w(i)

, say. Let n ∈ eG be the corresponding

permutation representation of φ. It is clear that n is a product of cycles of length either 1 or p,
and also that at least one cycle of length p must exists.
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Proposition ([3])

The group G(Nor) acts transitively on Per(Nor).
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Example (X = Circle4 and (Nori )i )

I Periodic points 0 ↔ (0, 0, 0, 0), 1 ↔ (1, 0, 0, 0), 2 ↔ (0, 1, 0, 0), 3 ↔ (0, 0, 1, 0),
4 ↔ (1, 0, 1, 0), 5 ↔ (0, 0, 0, 1) and 6 ↔ (0, 1, 0, 1).

I Permutation representations ni of Nori for 0 ≤ i ≤ 3 (cycle form): n0 = (0, 1)(3, 4),
n1 = (0, 2)(5, 6), n2 = (0, 3)(1, 4) and n3 = (0, 5)(2, 6).

I A7 has a presentation 〈x , y | x3 = y5 = (xy)7 = (xy−1xy)2 = (xy−2xy2) = 1〉, and
a = (0, 1, 2) and b = (2, 3, 4, 5, 6) are two elements of S7 that will generate A7.

I Now, a′ = n2(n0n3n1)2 = (0, 4, 1, 6, 3) and b′ = (n3n2)2(n2n1)2 = (2, 5, 3), and after
relabeling of the periodic points using the permutation (0, 3, 2)(1, 5) we transform a′ into a and
b′ into b.

I Since every generator ni is even we conclude that G(Nor) ∼= A7.

I Is there a sequence w such that the map Norw above has (a) two 3-cycles and a fixed
point, (b) five fixed points and a 2-cycle, (c) a 3-cycle, a 2-cycle and two fixed points?
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Example (Function F232)

This function has table

(xi−1, xi , xi+1) 111 110 101 100 011 010 001 000
f 1 1 1 0 1 0 0 0

I Isolated zeroes are removed but never introduced, and non-isolated 0-blocks may never shrink.

I The function assigning to x the number of non-isolated zeros minus the number of isolated
zeroes is a non-decreasing potential function.

I All periodic points are fixed points for any w ∈ W ′
X and thus the dynamics group is trivial.

I The same argument allows us to conclude that functions 160, 164, 168 and 172 are
w -independent as well.
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Example (G (F51))

Since F51 is invertible we have P = Fn
2. The function table is

(xi−1, xi , xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 1 0 0 1 1

I Every generator is an involution and mi,i+1 = 2.

I It follows directly that G(F51) is a quotient of Zn
2. Since every composition of distinct sets of

generators toggles a different subset of vertex states, it follows that G(F51) contains at least 2n

elements, and we conclude that this dynamics group is isomorphic to Zn
2.
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Example (G (F60))

ECA rule 60 has table

(xi−1, xi , xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 1 1 1 0 0

It is the linear function given by (xi−1, xi , xi+1) 7→ xi−1 + xi .

I Since the vertex functions are linear so are the X -local functions – may represent each of
them as a matrix. That is, Fi has matrix representation Ai := I + Ei,i−1 (standard basis.

I Each matrix Ai has determinant 1, so the matrix group generated by A = {A1, . . . , An} is a
subgroup of SLn(F2).

I It is a known fact that A generates the entire SLn(F2), so G(F60) is isomorphic to SLn(F2).

I For F60 we have mi,i+1 = 4.

I G(F150) isomorphic to group with GAP index (96,227). G. Miller: 230/231.
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Summary and Some Open Questions

I Have seen how one may obtain insight into periodic orbits structure for asynchronous,
sequential systems.

I One can construct more general groups than G(F). One approach is to take Ω ⊂ W to be a
set of update sequences and then consider

G(F, Ω) = 〈Fw |w ∈ Ω〉 .

What choices of Ω are useful?

I How do we compute dynamics groups efficiently?

if X is a graph union of X1 and X2, can we derive the dynamics group for X from those
over X1 and X2 when functions are suitably defined?

Is there a result analogous to the Seifert/van Kampen Theorem from algebraic topology?
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