The Dynamics Group of Asynchronous Systems

Henning S. Mortveit
Department of Mathematics \& NDSSL, Virginia Bioinformatics Institute

Dedicated to Eric Goles for his $60^{\text {th }}$ birthday!

DISCO 2011
Instituto de Sistemas Complejos de Valparaíso November 24-26, 2011, Valparaíso, Chile

Virginia

Talk Overview - Dynamics Groups

- Using tools from group theory to assess long-term dynamics of asynchronous discrete dynamical systems.
- The notion of update sequence independence.
- The dynamics group of an update sequence independent system.
- Relations to Coxeter theory and Coxeter groups.
- Outlook and open questions.

Sequential Dynamical Systems (SDS)

- A subclass of graph dynamical systems (GDS). Constructed from:
- A (dependency) graph X with vertex set $\mathrm{v}[X]=\{1,2, \ldots, n\}$.
- For each vertex v a state $x_{v} \in K$ (e.g. $K=\mathbb{F}_{2}=\{0,1\}$) and an X-local function $F_{v}: K^{n} \longrightarrow K^{n}$

$$
F_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(x_{1}, \ldots, \underbrace{f_{v}(x[v])}_{\text {vertex function } v},, \ldots, x_{n}) .
$$

- A word $w=w_{1} w_{2} \cdots w_{k}$ over the vertex set of X.

Sequential Dynamical Systems (SDS)

- A subclass of graph dynamical systems (GDS). Constructed from:
- A (dependency) graph X with vertex set $\mathrm{v}[X]=\{1,2, \ldots, n\}$.
- For each vertex v a state $x_{v} \in K$ (e.g. $K=\mathbb{F}_{2}=\{0,1\}$) and an X-local function $F_{v}: K^{n} \longrightarrow K^{n}$

$$
F_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(x_{1}, \ldots, \underbrace{f_{v}(x[v])}_{\text {vertex function } v},, \ldots, x_{n}) .
$$

- A word $w=w_{1} w_{2} \cdots w_{k}$ over the vertex set of X.
- The SDS map $\mathbf{F}_{w}: K^{n} \longrightarrow K^{n}$ is:

$$
\mathbf{F}_{w}=F_{w(k)} \circ F_{\pi(k-1)} \circ \cdots \circ F_{w(1)}
$$

SDS - An example

- System components:
- Circle graph on 4 vertices: $X=$ Circle $_{4}$
- Update sequence: $\pi=(1,2,3,4)$
- Vertex functions:

$$
\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)
$$

- The X-local map for vertex 1 :

$$
F_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{4}\right), x_{2}, x_{3}, x_{4}\right)
$$

Dependency graph

SDS - An example

- System components:
- Circle graph on 4 vertices: $X=$ Circle $_{4}$
- Update sequence: $\pi=(1,2,3,4)$
- Vertex functions:

$$
\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)
$$

- The X-local map for vertex 1 :

$$
F_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{4}\right), x_{2}, x_{3}, x_{4}\right)
$$

Dependency graph

- System update:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,0,0) & \stackrel{F_{1}}{\mapsto}(1,0,0,0) \text { and } \\
(1,0,0,0) & \stackrel{F_{2}}{\mapsto}(1,0,0,0) \stackrel{F_{3}}{\mapsto}(1,0,1,0) \stackrel{F_{4}}{\mapsto}(1,0,1,0)
\end{aligned}
$$

SDS - An example

- System components:
- Circle graph on 4 vertices: $X=$ Circle $_{4}$
- Update sequence: $\pi=(1,2,3,4)$
- Vertex functions:

$$
\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)
$$

- The X-local map for vertex 1 :

$$
F_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\operatorname{nor}_{3}\left(x_{1}, x_{2}, x_{4}\right), x_{2}, x_{3}, x_{4}\right)
$$

- System update:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,0,0) & \stackrel{F_{1}}{\mapsto}(1,0,0,0) \text { and } \\
(1,0,0,0) & \stackrel{F_{2}}{\mapsto}(1,0,0,0) \stackrel{F_{3}}{\mapsto}(1,0,1,0) \stackrel{F_{4}}{\mapsto}(1,0,1,0)
\end{aligned}
$$

Dependency graph

Phase space

$$
\mathbf{F}_{\pi}(0,0,0,0)=(1,0,1,0)
$$

Definition (Update sequence independence)

A sequence $\mathbf{F}=\left(F_{i}\right)_{i=1}^{n}$ of X-local maps over a finite state space K^{n} are word (resp. permutation) update sequence independent, if there exists $P \subset K^{n}$ such that for all fair words $w \in W_{X}^{\prime}$ (resp. $w \in S_{X}$) we have

$$
\operatorname{Per}\left(\mathbf{F}_{w}\right)=P .
$$

Definition (Update sequence independence)

A sequence $\mathbf{F}=\left(F_{i}\right)_{i=1}^{n}$ of X-local maps over a finite state space K^{n} are word (resp. permutation) update sequence independent, if there exists $P \subset K^{n}$ such that for all fair words $w \in W_{X}^{\prime}$ (resp. $w \in S_{X}$) we have

$$
\operatorname{Per}\left(\mathbf{F}_{w}\right)=P .
$$

- We usually just say that $\mathbf{F}=\left(F_{i}\right)_{i}$ is π-independent or w-independent.
- Clearly, word independence implies permutation independence; the converse is false.

Definition (Update sequence independence)

A sequence $\mathbf{F}=\left(F_{i}\right)_{i=1}^{n}$ of X-local maps over a finite state space K^{n} are word (resp. permutation) update sequence independent, if there exists $P \subset K^{n}$ such that for all fair words $w \in W_{X}^{\prime}$ (resp. $w \in S_{X}$) we have

$$
\operatorname{Per}\left(\mathbf{F}_{w}\right)=P .
$$

- We usually just say that $\mathbf{F}=\left(F_{i}\right)_{i}$ is π-independent or w-independent.
- Clearly, word independence implies permutation independence; the converse is false.
- Questions:
- Are there word independent SDSs, and is this a common property?
- Why should we care about this in the first place?

Properties of π-independent SDS

Proposition

Let X be a graph and $\mathbf{F}=\left(F_{i}\right)_{i}$ a π-independent sequence of X-local functions with periodic points P. Then each restricted function

$$
\left.F_{i}\right|_{P}: P \longrightarrow P
$$

is a well-defined bijection.

Properties of π-independent SDS

Proposition

Let X be a graph and $\mathbf{F}=\left(F_{i}\right)_{i}$ a π-independent sequence of X-local functions with periodic points P. Then each restricted function

$$
\left.F_{i}\right|_{P}: P \longrightarrow P
$$

is a well-defined bijection.

Proof.

- Let π be a permutation with $\pi(1)=i$, let $P=\operatorname{Per}\left(\mathbf{F}_{\pi}\right)$ and $P^{\prime}=\operatorname{Per}\left(\mathbf{F}_{\sigma_{1}(\pi)}\right)$ [cyclic 1-shift].

Properties of π-independent SDS

Proposition

Let X be a graph and $\mathbf{F}=\left(F_{i}\right)_{i}$ a π-independent sequence of X-local functions with periodic points P. Then each restricted function

$$
\left.F_{i}\right|_{P}: P \longrightarrow P
$$

is a well-defined bijection.

Proof.

- Let π be a permutation with $\pi(1)=i$, let $P=\operatorname{Per}\left(\mathbf{F}_{\pi}\right)$ and $P^{\prime}=\operatorname{Per}\left(\mathbf{F}_{\sigma_{1}(\pi)}\right)$ [cyclic 1-shift].
- We have that $\left.F_{i}\right|_{P}: P \longrightarrow F_{i}(P)$ is a bijection.
- From $F_{\pi(1)} \circ \mathbf{F}_{\pi}=\mathbf{F}_{\sigma_{1}(\pi)} \circ F_{\pi(1)}$ it follows that $F_{i}(P) \subset P^{\prime}$.

Properties of π-independent SDS

Proposition

Let X be a graph and $\mathbf{F}=\left(F_{i}\right)_{i}$ a π-independent sequence of X-local functions with periodic points P. Then each restricted function

$$
\left.F_{i}\right|_{P}: P \longrightarrow P
$$

is a well-defined bijection.

Proof.

Let π be a permutation with $\pi(1)=i$, let $P=\operatorname{Per}\left(\mathbf{F}_{\pi}\right)$ and $P^{\prime}=\operatorname{Per}\left(\mathbf{F}_{\sigma_{1}(\pi)}\right)$ [cyclic 1-shift].

- We have that $\left.F_{i}\right|_{P}: P \longrightarrow F_{i}(P)$ is a bijection.
- From $F_{\pi(1)} \circ \mathbf{F}_{\pi}=\mathbf{F}_{\sigma_{1}(\pi)} \circ F_{\pi(1)}$ it follows that $F_{i}(P) \subset P^{\prime}$.
- Repeated application of this n times yields $|P|=\left|P^{\prime}\right|$.
- Upshot: $F_{i}(P)=P^{\prime}$ and by π-independence we have $P=P^{\prime}$.

Dynamics Group - A first look

- For π-independent SDS each $\left.F_{i}\right|_{P}$ is a permutation P.
- We set

$$
F_{i}^{*}:=\left.F_{i}\right|_{P}
$$

- If $|P|=m$ and we label the periodic points $1,2, \ldots, m$, then each $F_{i}^{*} \leftrightarrow n_{i} \in S_{m}$.

Dynamics Group - A first look

- For π-independent SDS each $\left.F_{i}\right|_{P}$ is a permutation P.
- We set

$$
F_{i}^{*}:=\left.F_{i}\right|_{P}
$$

- If $|P|=m$ and we label the periodic points $1,2, \ldots, m$, then each $F_{i}^{*} \leftrightarrow n_{i} \in S_{m}$.

Definition (Dynamics group)

Let K be a finite set and $\mathbf{F}=\left(F_{i}\right)_{i}$ be a π-independent sequence of X-local functions. The dynamics group of \mathbf{F} is

$$
G(\mathbf{F})=\left\langle F_{1}^{*}, \ldots, F_{n}^{*}\right\rangle .
$$

Dynamics Group - A first look

- For π-independent SDS each $\left.F_{i}\right|_{P}$ is a permutation P.
- We set

$$
F_{i}^{*}:=\left.F_{i}\right|_{P}
$$

- If $|P|=m$ and we label the periodic points $1,2, \ldots, m$, then each $F_{i}^{*} \leftrightarrow n_{i} \in S_{m}$.

Definition (Dynamics group)

Let K be a finite set and $\mathbf{F}=\left(F_{i}\right)_{i}$ be a π-independent sequence of X-local functions. The dynamics group of \mathbf{F} is

$$
G(\mathbf{F})=\left\langle F_{1}^{*}, \ldots, F_{n}^{*}\right\rangle .
$$

- Clearly, $G(\mathbf{F})$ is isomorphic to a subgroup of S_{m}.
- Sometimes more convenient to consider the group generated by the permutations n_{i} - it is denoted by $\widetilde{G}(\mathbf{F})$.

An Example of w－Independence

Proposition

SDS induced by Nor－functions are w－independent for any graph X ．

An Example of w-Independence

Proposition

SDS induced by Nor-functions are w-independent for any graph X.

Proof idea.

Establish a 1-1 correspondence between $\operatorname{Per}\left(\mathbf{N o r}_{w}\right)$ and the set of independent sets of X. Of course, the latter quantity does not depend on w.

Example (brute force)

Take $X=K_{3}$ (complete graph on 3 vertices) and $\mathbf{F}=\mathbf{N o r}=\left(\mathrm{Nor}_{i}\right)_{i}$.

Periodic point	Label	Nor $_{1}$	Nor $_{2}$	Nor $_{3}$
$(0,0,0)$	0	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$
$(1,0,0)$	1	$(0,0,0)$	$(1,0,0)$	$(1,0,0)$
$(0,1,0)$	2	$(0,1,0)$	$(0,0,0)$	$(0,1,0)$
$(0,0,1)$	3	$(0,0,1)$	$(0,0,1)$	$(0,0,0)$
Permutation repr.		$n_{1}=(0,1)$	$n_{2}=(0,2)$	$n_{3}=(0,3)$

Example (brute force)

Take $X=K_{3}$ (complete graph on 3 vertices) and $\mathbf{F}=\mathbf{N o r}=\left(\text { Nor }_{i}\right)_{i}$.

Periodic point	Label	Nor $_{1}$	Nor $_{2}$	Nor $_{3}$
$(0,0,0)$	0	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$
$(1,0,0)$	1	$(0,0,0)$	$(1,0,0)$	$(1,0,0)$
$(0,1,0)$	2	$(0,1,0)$	$(0,0,0)$	$(0,1,0)$
$(0,0,1)$	3	$(0,0,1)$	$(0,0,1)$	$(0,0,0)$
Permutation repr.		$n_{1}=(0,1)$	$n_{2}=(0,2)$	$n_{3}=(0,3)$

- Clearly, $\tilde{G}($ Nor $)<S_{4}$. From $n_{3} n_{2} n_{1}=(0,1,2,3)$, and the fact that
$S_{4}=\langle\{(0,1),(0,1,2,3)\}\rangle$ it follows that $S_{4}<G($ Nor $)$.
- Hence $G($ Nor $) \cong S_{4}$.

Example (brute force)

Take $X=K_{3}$ (complete graph on 3 vertices) and $\mathbf{F}=\mathbf{N o r}=\left(\mathrm{Nor}_{i}\right)_{i}$.

Periodic point	Label	Nor $_{1}$	Nor $_{2}$	Nor $_{3}$
$(0,0,0)$	0	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$
$(1,0,0)$	1	$(0,0,0)$	$(1,0,0)$	$(1,0,0)$
$(0,1,0)$	2	$(0,1,0)$	$(0,0,0)$	$(0,1,0)$
$(0,0,1)$	3	$(0,0,1)$	$(0,0,1)$	$(0,0,0)$
Permutation repr.		$n_{1}=(0,1)$	$n_{2}=(0,2)$	$n_{3}=(0,3)$

- Clearly, $\widetilde{G}($ Nor $)<S_{4}$. From $n_{3} n_{2} n_{1}=(0,1,2,3)$, and the fact that
$S_{4}=\langle\{(0,1),(0,1,2,3)\}\rangle$ it follows that $S_{4}<G($ Nor $)$.
- Hence $G($ Nor $) \cong S_{4}$.
- Significance: We can organize the periodic points in any cycle configuration we like by a suitable choice of update sequence w.

How common is π-independence?

Theorem (Theorem [1])

For SDS over $X=$ Circle $_{n}$, precisely 104 of the 256 elementary cellular automaton rules induce sequences $\left(F_{i}\right)_{i}$ that are π-independent for any $n \geq 3$. Of these, 86 are w-independent for any $n \geq 3$.

How common is π-independence?

Theorem (Theorem [1])

For SDS over $X=$ Circle $_{n}$, precisely 104 of the 256 elementary cellular automaton rules induce sequences $\left(F_{i}\right)_{i}$ that are π-independent for any $n \geq 3$. Of these, 86 are w-independent for any $n \geq 3$.

- Thus, roughly 40% of ECA SDS over Circle $_{n}$ are π-independent.
- Currently, it is unclear how this generalizes to other graph classes.

How common is π-independence?

Theorem (Theorem [1])

For SDS over $X=$ Circle $_{n}$, precisely 104 of the 256 elementary cellular automaton rules induce sequences $\left(F_{i}\right)_{i}$ that are π-independent for any $n \geq 3$. Of these, 86 are w-independent for any $n \geq 3$.

- Thus, roughly 40% of ECA SDS over Circle $_{n}$ are π-independent.
- Currently, it is unclear how this generalizes to other graph classes.
- The following classes have been analyzed more generally:
- Invertible SDS are (of course) w-independent.
- Nor-SDS, Nand-SDS, (Nor + Nand)-SDS, threshold SDS, and trivial SDS are all w-independent.
- SDS with monotone functions are not necessarily w-independent (example, ECA rule 240).

π-independence does not imply w-independence

- Example due to Kevin Ahrendt and Collin Bleak.
- Take $X=$ Circle $_{n}$ and let \mathbf{F} be induced by ECA 32 which has function table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	0	0	0	0	0

- Claim: $\operatorname{Per}\left(\mathbf{F}_{\pi}^{32}\right)=\{0\}$ for any permutation $\pi \in S_{X}$.
- The state $x=0$ is the only fixed point (use local fixed point graph).

π-independence does not imply w-independence

- Example due to Kevin Ahrendt and Collin Bleak.
- Take $X=$ Circle $_{n}$ and let \mathbf{F} be induced by ECA 32 which has function table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	0	0	0	0	0

- Claim: $\operatorname{Per}\left(\mathbf{F}_{\pi}^{32}\right)=\{0\}$ for any permutation $\pi \in S_{X}$.
- The state $x=0$ is the only fixed point (use local fixed point graph).
- Non-isolated 0-blocks will persist and grow by each application of \mathbf{F}^{32} since

$$
\cdots \underbrace{100}_{\rightarrow 0} 00 \overbrace{001}^{\rightarrow 0} \ldots,
$$

and

$$
\ldots 10000 \overbrace{011}^{\overbrace{0}^{0}} \ldots \text { and } \ldots 10000 \overbrace{010}^{\rightarrow_{0}^{0}} \ldots
$$

π-independence does not imply w-independence - cont.

- A state $x \in \mathbb{F}_{2}^{n}$ where each 0-block is isolated will eventually map to a state containing a non-isolated zero-block. Consider the the configuration ... 101 ... around vertex i.

Case 1: if $i-1<_{\pi} i$ or $i+1<_{\pi} i$ then a non-isolated 0 -block is created immediately.
Case 2: if $i<_{\pi} i-1$ then a 0 -block of length ≥ 2 appears after two iterations. Here it is crucial that π is a permutation and not a fair word.

π-independence does not imply w-independence - cont.

- A state $x \in \mathbb{F}_{2}^{n}$ where each 0-block is isolated will eventually map to a state containing a non-isolated zero-block. Consider the the configuration ... $101 \ldots$ around vertex i.

Case 1: if $i-1<_{\pi} i$ or $i+1<_{\pi} i$ then a non-isolated 0 -block is created immediately.
Case 2: if $i<_{\pi} i-1$ then a 0 -block of length ≥ 2 appears after two iterations. Here it is crucial that π is a permutation and not a fair word.

- However, \mathbf{F}^{32} is not w-independent: take $x=(1,1, \ldots, 1)$ and update sequence $w=(1,1,2,2, \ldots, n, n)$.

π-independence does not imply w-independence - cont.

- A state $x \in \mathbb{F}_{2}^{n}$ where each 0-block is isolated will eventually map to a state containing a non-isolated zero-block. Consider the the configuration ...101... around vertex i.

Case 1: if $i-1<_{\pi} i$ or $i+1<_{\pi} i$ then a non-isolated 0 -block is created immediately.
Case 2: if $i<_{\pi} i-1$ then a 0 -block of length ≥ 2 appears after two iterations. Here it is crucial that π is a permutation and not a fair word.

- However, \mathbf{F}^{32} is not w-independent: take $x=(1,1, \ldots, 1)$ and update sequence $w=(1,1,2,2, \ldots, n, n)$.

- Observation:

- If $\left(F_{i}\right)_{i}$ is π-independent with periodic points P then there may be states in $K^{n} \backslash P$ that are "locally periodic": F_{i} applied to x two or more times in succession gives x.
- Can still form the dynamics group, but in this case it only gives information about the points in P (the "permutation periodic" points).

Relations to Coxeter Theory

- A (finitely generated) Coxeter group with generating set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and symmetric Coxeter matrix $M=\left[m_{i j}\right]_{i j}$ where $m_{i j} \in \mathbb{N} \cup\{\infty\}$ and $m_{i j}=1$ iff $i=j$ is the group with presentation

$$
W(S)=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle .
$$

- Every group G generated by a finite set of involutions can therefore be viewed as a quotient of a Coxeter group. One defines $m_{i j}$ to be the order of the product of the corresponding generators.

Relations to Coxeter Theory

- A (finitely generated) Coxeter group with generating set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and symmetric Coxeter matrix $M=\left[m_{i j}\right]_{i j}$ where $m_{i j} \in \mathbb{N} \cup\{\infty\}$ and $m_{i j}=1$ iff $i=j$ is the group with presentation

$$
W(S)=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle .
$$

- Every group G generated by a finite set of involutions can therefore be viewed as a quotient of a Coxeter group. One defines $m_{i j}$ to be the order of the product of the corresponding generators.
- Artin groups

Relations to Coxeter Theory

- A (finitely generated) Coxeter group with generating set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and symmetric Coxeter matrix $M=\left[m_{i j}\right]_{i j}$ where $m_{i j} \in \mathbb{N} \cup\{\infty\}$ and $m_{i j}=1$ iff $i=j$ is the group with presentation

$$
W(S)=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}\right\rangle .
$$

- Every group G generated by a finite set of involutions can therefore be viewed as a quotient of a Coxeter group. One defines $m_{i j}$ to be the order of the product of the corresponding generators.
- Artin groups

Theorem

If $\mathbf{F}=\left(F_{i}\right)_{i}$ is π-independent and $K=\{0,1\}$, then each F_{i}^{*} is either trivial or an involution. As a result, $G(\mathbf{F})$ is either trivial or a quotient of a Coxeter group.

Orders of $F_{i}^{*} \circ F_{j}^{*}$ for $X=$ Circle $_{n}$

Let $X=$ Circle $_{n}$ and consider induced sequences $\left(F_{i}\right)_{i}$. What are the possible values for $m_{i j}$, the order of $F_{i}^{*} \circ F_{j}^{*}$?

- Clearly, i and j must differ by 1 for this to be interesting. Since $F_{i+1}^{*} \circ F_{i}^{*}$ may only change the states x_{i} and x_{i+1}, and since there are only four sub-configuration for these, we see that any $x \in P$ under $F_{i+1}^{*} \circ F_{i}^{*}$ must have period $1 \leq p \leq 4$.

Orders of $F_{i}^{*} \circ F_{j}^{*}$ for $X=$ Circle $_{n}$

Let $X=$ Circle $_{n}$ and consider induced sequences $\left(F_{i}\right)_{i}$. What are the possible values for $m_{i j}$, the order of $F_{i}^{*} \circ F_{j}^{*}$?

- Clearly, i and j must differ by 1 for this to be interesting. Since $F_{i+1}^{*} \circ F_{i}^{*}$ may only change the states x_{i} and x_{i+1}, and since there are only four sub-configuration for these, we see that any $x \in P$ under $F_{i+1}^{*} \circ F_{i}^{*}$ must have period $1 \leq p \leq 4$.
- The order $F_{i+1}^{*} \circ F_{i}^{*}$ must be a divisor of 12. As shown in [2], all possible divisors of 12 are realized.

Orders of $F_{i}^{*} \circ F_{j}^{*}$ for $X=$ Circle $_{n}$

Let $X=$ Circle $_{n}$ and consider induced sequences $\left(F_{i}\right)_{i}$. What are the possible values for $m_{i j}$, the order of $F_{i}^{*} \circ F_{j}^{*}$?

- Clearly, i and j must differ by 1 for this to be interesting. Since $F_{i+1}^{*} \circ F_{i}^{*}$ may only change the states x_{i} and x_{i+1}, and since there are only four sub-configuration for these, we see that any $x \in P$ under $F_{i+1}^{*} \circ F_{i}^{*}$ must have period $1 \leq p \leq 4$.
- The order $F_{i+1}^{*} \circ F_{i}^{*}$ must be a divisor of 12. As shown in [2], all possible divisors of 12 are realized.

Example ($m_{i, i+1}$ in the case of the parity function)

	$i-1$	i	$i+1$	$i+2$
0	x_{i-1}	x_{i}	x_{i+1}	x_{i+2}
1	x_{i-1}	$x_{i-1}+x_{i}+x_{i+1}$	$x_{i-1}+x_{i}+x_{i+2}$	x_{i+2}
2	x_{i-1}	$x_{i-1}+x_{i+1}+x_{i+2}$	$x_{i}+x_{i+1}+x_{i+2}$	x_{i+2}
3	x_{i-1}	x_{i}	x_{i+1}	x_{i+2}

and conclude that $m_{i, i+1}=3$. (Actually, we computed the order of $F_{i+1} \circ F_{i}$. Why is that okay?)

Theorem

Let $\left(F_{i}\right)_{i}$ be π-independent with periodic points P. Then: (i) $G(\mathbf{F})=1$ if and only if all $x \in P$ are fixed points. (ii) If $G(\mathbf{F})$ acts transitively on P and p is a prime dividing $|P|$, then there exists a word $w \in W$ such that (a) $\left|\operatorname{Fix}\left(\mathbf{F}_{w}\right)\right|$ is divisible by p, and (b) all periodic orbits of length ≥ 2 of \mathbf{F}_{w} have length p.

Theorem

Let $\left(F_{i}\right)_{i}$ be π-independent with periodic points P. Then: (i) $G(\mathbf{F})=1$ if and only if all $x \in P$ are fixed points. (ii) If $G(\mathbf{F})$ acts transitively on P and p is a prime dividing $|P|$, then there exists a word $w \in W$ such that (a) $\left|\operatorname{Fix}\left(\mathbf{F}_{w}\right)\right|$ is divisible by p, and (b) all periodic orbits of length ≥ 2 of \mathbf{F}_{w} have length p.

Proof.

- The dynamics group is trivial if and only if each generator is trivial which happens precisely when every periodic point is a fixed point.

Theorem

Let $\left(F_{i}\right)_{i}$ be π-independent with periodic points P. Then: (i) $G(\mathbf{F})=1$ if and only if all $x \in P$ are fixed points. (ii) If $G(\mathbf{F})$ acts transitively on P and p is a prime dividing $|P|$, then there exists a word $w \in W$ such that (a) $\left|\operatorname{Fix}\left(\mathbf{F}_{w}\right)\right|$ is divisible by p, and (b) all periodic orbits of length ≥ 2 of \mathbf{F}_{w} have length p.

Proof.

- The dynamics group is trivial if and only if each generator is trivial which happens precisely when every periodic point is a fixed point.
- Let $x \in P$. For a finite group acting on a set X we always have $|G x|=\left[G: G_{x}\right]=|G| /\left|G_{x}\right|$ where $G_{x}=\{\phi \in G \mid \phi(x)=x\}$. Since the action is assumed to be transitive, we conclude that $G x=P$ and derive

$$
|G|=|P|\left|G_{x}\right|
$$

and thus that p divides $|G|$. By Cauchy's Theorem, it follows that G has a subgroup of order p, and this subgroup is cyclic with generator $\phi=\prod_{i} F_{w(i)}^{*}$, say. Let $n \in \widetilde{G}$ be the corresponding permutation representation of ϕ. It is clear that n is a product of cycles of length either 1 or p, and also that at least one cycle of length p must exists.

Proposition ([3])

The group $G(\mathbf{N o r})$ acts transitively on $\operatorname{Per}(\mathbf{N o r})$.

Example $\left(X=\right.$ Circle $_{4}$ and $\left.\left(\text { Nor }_{i}\right)_{i}\right)$

- Periodic points $0 \leftrightarrow(0,0,0,0), 1 \leftrightarrow(1,0,0,0), 2 \leftrightarrow(0,1,0,0), 3 \leftrightarrow(0,0,1,0)$, $4 \leftrightarrow(1,0,1,0), 5 \leftrightarrow(0,0,0,1)$ and $6 \leftrightarrow(0,1,0,1)$.
- Permutation representations n_{i} of Nor $_{i}$ for $0 \leq i \leq 3$ (cycle form): $n_{0}=(0,1)(3,4)$, $n_{1}=(0,2)(5,6), n_{2}=(0,3)(1,4)$ and $n_{3}=(0,5)(2,6)$.
- A_{7} has a presentation $\left\langle x, y \mid x^{3}=y^{5}=(x y)^{7}=\left(x y^{-1} x y\right)^{2}=\left(x y^{-2} x y^{2}\right)=1\right\rangle$, and $a=(0,1,2)$ and $b=(2,3,4,5,6)$ are two elements of S_{7} that will generate A_{7}.
- Now, $a^{\prime}=n_{2}\left(n_{0} n_{3} n_{1}\right)^{2}=(0,4,1,6,3)$ and $b^{\prime}=\left(n_{3} n_{2}\right)^{2}\left(n_{2} n_{1}\right)^{2}=(2,5,3)$, and after relabeling of the periodic points using the permutation $(0,3,2)(1,5)$ we transform a^{\prime} into a and b^{\prime} into b.
- Since every generator n_{i} is even we conclude that $G($ Nor $) \cong A_{7}$.

Example $\left(X=\right.$ Circle $_{4}$ and $\left.\left(\text { Nor }_{i}\right)_{i}\right)$

- Periodic points $0 \leftrightarrow(0,0,0,0), 1 \leftrightarrow(1,0,0,0), 2 \leftrightarrow(0,1,0,0), 3 \leftrightarrow(0,0,1,0)$, $4 \leftrightarrow(1,0,1,0), 5 \leftrightarrow(0,0,0,1)$ and $6 \leftrightarrow(0,1,0,1)$.
- Permutation representations n_{i} of Nor $_{i}$ for $0 \leq i \leq 3$ (cycle form): $n_{0}=(0,1)(3,4)$, $n_{1}=(0,2)(5,6), n_{2}=(0,3)(1,4)$ and $n_{3}=(0,5)(2,6)$.
- A_{7} has a presentation $\left\langle x, y \mid x^{3}=y^{5}=(x y)^{7}=\left(x y^{-1} x y\right)^{2}=\left(x y^{-2} x y^{2}\right)=1\right\rangle$, and $a=(0,1,2)$ and $b=(2,3,4,5,6)$ are two elements of S_{7} that will generate A_{7}.
- Now, $a^{\prime}=n_{2}\left(n_{0} n_{3} n_{1}\right)^{2}=(0,4,1,6,3)$ and $b^{\prime}=\left(n_{3} n_{2}\right)^{2}\left(n_{2} n_{1}\right)^{2}=(2,5,3)$, and after relabeling of the periodic points using the permutation $(0,3,2)(1,5)$ we transform a^{\prime} into a and b^{\prime} into b.
- Since every generator n_{i} is even we conclude that $G($ Nor $) \cong A_{7}$.
- Is there a sequence w such that the map Nor $_{w}$ above has (a) two 3-cycles and a fixed point, (b) five fixed points and a 2 -cycle, (c) a 3-cycle, a 2 -cycle and two fixed points?

Example (Function \mathbf{F}^{232})

This function has table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	1	1	1	0	1	0	0	0

Example (Function \mathbf{F}^{232})

This function has table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	1	1	1	0	1	0	0	0

- Isolated zeroes are removed but never introduced, and non-isolated 0-blocks may never shrink.
- The function assigning to x the number of non-isolated zeros minus the number of isolated zeroes is a non-decreasing potential function.
- All periodic points are fixed points for any $w \in W_{X}^{\prime}$ and thus the dynamics group is trivial.
- The same argument allows us to conclude that functions 160, 164, 168 and 172 are w-independent as well.

Example $\left(G\left(\mathbf{F}^{51}\right)\right)$

Since F^{51} is invertible we have $P=\mathbb{F}_{2}^{n}$. The function table is

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	1	0	0	1	1

Example $\left(G\left(\mathbf{F}^{51}\right)\right)$

Since F^{51} is invertible we have $P=\mathbb{F}_{2}^{n}$. The function table is

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	1	0	0	1	1

- Every generator is an involution and $m_{i, i+1}=2$.
- It follows directly that $G\left(\mathbf{F}^{51}\right)$ is a quotient of \mathbb{Z}_{2}^{n}. Since every composition of distinct sets of generators toggles a different subset of vertex states, it follows that $G\left(\mathbf{F}^{51}\right)$ contains at least 2^{n} elements, and we conclude that this dynamics group is isomorphic to \mathbb{Z}_{2}^{n}.

Example ($G\left(\mathbf{F}^{60}\right)$)

ECA rule 60 has table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	1	1	1	0	0

It is the linear function given by $\left(x_{i-1}, x_{i}, x_{i+1}\right) \mapsto x_{i-1}+x_{i}$.

Example $\left(G\left(\mathbf{F}^{60}\right)\right)$

ECA rule 60 has table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	1	1	1	0	0

It is the linear function given by $\left(x_{i-1}, x_{i}, x_{i+1}\right) \mapsto x_{i-1}+x_{i}$.

- Since the vertex functions are linear so are the X-local functions - may represent each of them as a matrix. That is, F_{i} has matrix representation $A_{i}:=I+E_{i, i-1}$ (standard basis.
- Each matrix A_{i} has determinant 1 , so the matrix group generated by $A=\left\{A_{1}, \ldots, A_{n}\right\}$ is a subgroup of $S L_{n}\left(\mathbb{F}_{2}\right)$.
- It is a known fact that A generates the entire $\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$, so $G\left(\mathbf{F}^{60}\right)$ is isomorphic to $\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$.
- For \mathbf{F}^{60} we have $m_{i, i+1}=4$.

Example $\left(G\left(\mathbf{F}^{60}\right)\right)$

ECA rule 60 has table

$\left(x_{i-1}, x_{i}, x_{i+1}\right)$	111	110	101	100	011	010	001	000
f	0	0	1	1	1	1	0	0

It is the linear function given by $\left(x_{i-1}, x_{i}, x_{i+1}\right) \mapsto x_{i-1}+x_{i}$.

- Since the vertex functions are linear so are the X-local functions - may represent each of them as a matrix. That is, F_{i} has matrix representation $A_{i}:=I+E_{i, i-1}$ (standard basis.
- Each matrix A_{i} has determinant 1 , so the matrix group generated by $A=\left\{A_{1}, \ldots, A_{n}\right\}$ is a subgroup of $S L_{n}\left(\mathbb{F}_{2}\right)$.
- It is a known fact that A generates the entire $\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$, so $G\left(\mathbf{F}^{60}\right)$ is isomorphic to $\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$.
- For \mathbf{F}^{60} we have $m_{i, i+1}=4$.
$-G\left(\mathbf{F}^{150}\right)$ isomorphic to group with GAP index $(96,227)$. G. Miller: $230 / 231$.

Summary and Some Open Questions

- Have seen how one may obtain insight into periodic orbits structure for asynchronous, sequential systems.

Summary and Some Open Questions

- Have seen how one may obtain insight into periodic orbits structure for asynchronous, sequential systems.
- One can construct more general groups than $G(\mathbf{F})$. One approach is to take $\Omega \subset W$ to be a set of update sequences and then consider

$$
G(\mathbf{F}, \Omega)=\left\langle\mathbf{F}_{w} \mid w \in \Omega\right\rangle .
$$

What choices of Ω are useful?

Summary and Some Open Questions

- Have seen how one may obtain insight into periodic orbits structure for asynchronous, sequential systems.
- One can construct more general groups than $G(\mathbf{F})$. One approach is to take $\Omega \subset W$ to be a set of update sequences and then consider

$$
G(\mathbf{F}, \Omega)=\left\langle\mathbf{F}_{w} \mid w \in \Omega\right\rangle .
$$

What choices of Ω are useful?

- How do we compute dynamics groups efficiently?
- if X is a graph union of X_{1} and X_{2}, can we derive the dynamics group for X from those over X_{1} and X_{2} when functions are suitably defined?
- Is there a result analogous to the Seifert/van Kampen Theorem from algebraic topology?

References I

掏
Matthew Macauley, Jon McCammond, and Henning S. Mortveit. Order independence in asynchronous cellular automata. Journal of Cellular Automata, 3(1):37-56, 2008. math.DS/0707.2360.

Matthew Macauley, Jon McCammond, and Henning S. Mortveit. Dynamics groups of asynchronous cellular automata. Journal of Algebraic Combinatorics, 33(1):11-35, 2011. Preprint: math.DS/0808.1238.

Henning S. Mortveit and Christian M. Reidys. An Introduction to Sequential Dynamical Systems. Universitext. Springer Verlag, 2007.

Matthew Macauley and Henning S. Mortveit. Cycle equivalence of graph dynamical systems.
 Nonlinearity, 22(2):421-436, 2009. math.DS/0709.0291.

Collaborators and Acknowledgments

- Collaborators:
- Chris L. Barrett (VT)
- Matthew Macauley (Clemson)
- Jon McCammond (UCSB)
- Madhav V. Marathe (VT)
- Christian M. Reidys (Odense)
- Work funded via grants from NSF, DOD, DTRA, DOE, NIH.
- Strong thanks to organizers of Automata 2011 and DISCO 2011 for all their generous support.

Cheers \& Happy Birthday!

