A new proof of Thiant's Lemma
 Modeling the situation as a gift for Eric's 60th birthday

Martín Matamala

Departamento de Ingeniería Matemática Centro de Modelamiento Matemático Universidad de Chile, Santiago, Chile.

Valparaíso, 24 November 2011

A gift for Eric Goles's 60th birthday
A mathematical Puzzle

The gift

As I found in internet

Inside the gift

The board

Inside the gift

A box of dominoes

Inside the gift

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, by using legal movement, creates a place in part B of F to insert the domino removed by player 1 .

We need an expert!

More detailed instructions

More detailed instructions

Instructions:

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

More detailed instructions

Instructions:

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

More detailed instructions

Instructions:

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

More detailed instructions

Legal Movement: dominoes may glide on the board in empty space

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

More detailed instructions

Legal Movement: dominoes may glide on the board in empty space

Instructions:

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

More detailed instructions

Legal Movement: dominoes may glide on the board in empty space

Instructions:

- This is a two players game.
- From the initial situation Player 1 removes a domino in part A of a feasible configuration F.
- Player 2, creates a place in part B of F by using legal movement, to insert the domino removed by player 1 .

Easy Example

Last rule

Player 2 wins if *he can always place the domino. Otherwise, Player 1 wins.

Last example before to play

Playing

I play first,

Playing

I play first,

Playing

I play first, Eric plays

Playing

I play first, Eric plays a set of movements,

Playing

I play first, Eric plays a set of movements, a second set of movements, and he wins.

Eric may always win!
A proof

Eric may always win!

Let S and T be the two empty
 spaces.

- G: graph with vertices the positions at even distance of S.
- Arcs in G are $\left(c, c^{\prime}\right)$ if one domino covers c and the space between c and c^{\prime} or $\left(c, v_{\infty}\right)$ if one domino covers c and one space in the border.

Eric may always win!

A proof

Let S and T be the two empty spaces.

- G: graph with vertices the positions at even distance of S.
- Arcs in G are (c, c^{\prime}) if one domino covers c and the space between c and c^{\prime} or $\left(c, v_{\infty}\right)$ if one domino covers c and one space in the border.

Eric may always win!

A proof

- Each vertex of G has exactly one outgoing arc.
- G is acyclic: any cycle contains an odd number of positions. But any cycle either contains both S and T, or none.
- A path in G ending in S defines a way to move the empty space by using legal movements.

Eric may always win!

A proof

- One of the path starting in the horizontal neighbors of T must end in S.

Eric may always win!
A proof

Eric may always win!

A proof

This finishes the proof.

The title makes sense

A new proof of Thiant's Lemma
[Thiant 2006] If (r, s) are the projections of a tiling with dominoes of a rectangular region R, and $r_{i}<r_{i-1}$, then $\left(r^{\prime}, s\right)$ are also the proyections of a tiling with dominoes of R, where $r_{j}^{\prime}=r_{j}$, for all
$j \neq i-1, i+1, r_{i-1}^{\prime}=r_{i-1}-1$ and $r_{i+1}^{\prime}=r_{i+1}+1$

Tilings

- U: unitary.
- Unidimensionals: one side's size $=1$ and the other ≥ 2. D^{h} and D^{\vee} : horizontal dominoes and vertical dominoes. B^{h} and B^{v} : horizontal bars and vertical bars.
- Bi-dimensionals: both sides of size at least 2.

C squares.

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Reconstruction of Domino tilings

Polynomial time algorithms

[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and D^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Domino tilings

Polynomial time algorithms
[Thiant, 2006.] The domino reconstruction problem can be reduced to the reconstruction problem with tiles U and B^{h} in polynomial time.

$$
\begin{array}{lllllllll}
3 & 2 & 1 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

Tiling reconstructions

with dominoes and bars
[Dürr, Goles, Rapaport, Rémila, 2003] The reconstruction problem with tiles U and D^{h} can be solved in polynomial time.
[Thiant, 2006.] The reconstruction problem with tiles D^{v} and D^{h} can be solved in polynomial time.
[Dürr, Guiñez, M., 2009.] The reconstruction problem with tiles B^{\vee} of two different lengths can be solved in polynomial time.
[Open] Complexity of the reconstruction problem with tiles D^{h} and B^{v}.

