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Nicolas Ollinger, in his Cellular Automata tutorial at

Unconventional Computation 2011, asked a question he

attributed to Stanislaw Ulam:

• “Does there exist a cellular automaton and a finite initial

configuration c such that the evolution of c contains all

finite patterns over the state set of the CA ?”



Nicolas Ollinger, in his Cellular Automata tutorial at

Unconventional Computation 2011, asked a question he

attributed to Stanislaw Ulam:

• “Does there exist a cellular automaton and a finite initial

configuration c such that the evolution of c contains all

finite patterns over the state set of the CA ?”

Ollinger also proposed a stronger variant:

• “Does there exist a cellular automaton and a finite initial

configuration whose orbit is dense in the Cantor

topology ?”



The first question is reformulated from

S. Ulam (1960) “A Collection of Mathematical Problems”, p. 30:



In this talk, a positive answer is provided to the first question:

A one-dimensional, reversible cellular automaton with six

states exists, with the property that the orbit of every

non-trivial finite initial configuration contains all finite

patterns over the state set.

The automaton multiplies numbers in base 6 by constant 3.
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7× 2 = 14. Number 1 is carried to the next digit place. The

carries will be added to the digits at the end of the

computation.
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The carries do not propagate because, at each position,

numbers in {0, 1} and {0, 2, 4, 6, 8} are added together. Such

sum does not exceed 9.



Multiplication by 2 in base 10:

7 3 1 8 0 4 6 7
e{0,1}1

42

1

8

0

06264

01001

+
439063641

Even

Because the carries do not propagate, the multiplication is

local. Digit i of the result only depends on the digits i and

i− 1 of the input. A cellular automaton can execute the

multiplication.



In the same way, any number expressed in base 6 can be

multiplied by 3 using a CA. The carries do not propagate

because 3 divides 6. The local rule of the CA is

i

i+ 1

0 1 2 3 4 5

0 0 0 1 1 2 2
1 3 3 4 4 5 5
2 0 0 1 1 2 2
3 3 3 4 4 5 5
4 0 0 1 1 2 2
5 3 3 4 4 5 5



In the same way, any number expressed in base 6 can be

multiplied by 3 using a CA. The carries do not propagate

because 3 divides 6. The local rule of the CA is

i

i+ 1

0 1 2 3 4 5

0 0 0 1 1 2 2
1 3 3 4 4 5 5
2 0 0 1 1 2 2
3 3 3 4 4 5 5
4 0 0 1 1 2 2
5 3 3 4 4 5 5

The CA is partitioned, and hence trivially reversible. (To go

back in time, each cell needs to look only at its left neighbor.)
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32 1

31 4

32 1

31 4 4

35 2 1

342 3 1

31 1 3 3 2 1

33 4 4 4 4

31 5 2 2 2 1

35 4 1 1 4

32 5 3 3 2 1

31 2 3 1 3 1 4 4

34 1 3 34 5 2 1

32 4 45 51 13

31 12 23 332 5 4



This CA has been studied before:

• F. Blanchard and A. Maass (1997) “Dynamical properties

of expansive one-sided cellular automata”

The same update rule but one-sided

configurations.

• D. Rudolph (1990) “×2 and ×3 invariant measures and

entropy”

Relates one-sided variant to the Furstenberg

conjecture in ergodic theory.

• S. Wolfram (2002) “A New Kind of Science”

Displays the two-sided variant.



State set is S = {0, 1, 2, 3, 4, 5}.

State 0 is quiescent. Configurations with only finite number of

non-0 states are finite.

Let F×3 : SZ −→ SZ be our CA map.



State set is S = {0, 1, 2, 3, 4, 5}.

State 0 is quiescent. Configurations with only finite number of

non-0 states are finite.

Let F×3 : SZ −→ SZ be our CA map.

For each finite configuration x ∈ SZ we define

α(x) =
∞
∑

i=−∞

xi · 6
−i

to be the number it represents in base 6.

Lemma. For every finite configuration x ∈ SZ,

α(F×3(x)) = 3α(x).



We can analogously define F×2 : SZ −→ SZ that multiplies by

2 in base 6.

The left-shift σ multiplies by 6, and the right shift σ−1 divides

by 6.



We can analogously define F×2 : SZ −→ SZ that multiplies by

2 in base 6.

The left-shift σ multiplies by 6, and the right shift σ−1 divides

by 6.

We have

α(σ−1 ◦ F×2 ◦ F×3(x)) = α(x)

for all finite x. Therefore

σ−1 ◦ F×2 ◦ F×3(x) = x

for all finite x, and consequently for all x ∈ SZ. The inverse

of F×3 is

σ−1 ◦ F×2.



Theorem. Let x 6= . . . 000 . . . be a finite initial configuration.

For every word w ∈ S∗ there is time t such that

F t
×3

(x) = . . . 00 w . . .



Theorem. Let x 6= . . . 000 . . . be a finite initial configuration.

For every word w ∈ S∗ there is time t such that

F t
×3

(x) = . . . 00 w . . .

Proof. Let

ξ = α(x) > 0.

Let I ⊆ (0, 1) be an open interval such that the base 6

representation of every element of I begins

0.w . . .

Let

J = log
6
(I/ξ) = {log

6
(a/ξ) | a ∈ I}.



Number log
6
(3) is irrational, and therefore the set

{ Frac[t log
6
(3)] | t ∈ N }

is dense in [0, 1). [Frac(a) is the fractional part of a ∈ R.]

Because J ⊆ R is open, there exist t ∈ N and n ∈ Z such that

t log
6
(3) + n ∈ J = log

6
(I/ξ).



Number log
6
(3) is irrational, and therefore the set

{ Frac[t log
6
(3)] | t ∈ N }

is dense in [0, 1). [Frac(a) is the fractional part of a ∈ R.]

Because J ⊆ R is open, there exist t ∈ N and n ∈ Z such that

t log
6
(3) + n ∈ J = log

6
(I/ξ).

Raising 6 to this power and multiplying by ξ gives

ξ3t6n ∈ I.

This means that

F t
×3

(x) = . . . 00 w . . .

as claimed.



Ollinger’s second questions asked whether it is possible to

generate every finite pattern in every position (or,

equivalently, centered at the origin.)

F×3 clearly does not have this property: it has one-sided

neighborhood.
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Let us make the cone expanding to both sides. Consider

F
×

3

2

= σ−1 ◦ F×3 ◦ F×3.

It multiplies by 3/2 in base 6.

1

1

3

4

3

32 1

32 1

35 2 1

31 1 3 3 2 1

31 5 2 2 2 1

32 5 3 3 2 1

34 1 3 34 5 2 1

31 12 23 332 5 4

31 13 3 3 5 5 53 2 2

3122 2 2 2 5 5 2 5 3

3123 3 3 4 2 5 1 1 3 5

312

3121 2 3 5 3 2 4 1 5 3 2 2 2

5 2 2 3 1 4 5 1 4 1 3 3



The orbit of finite x ∈ SZ contains every word w ∈ S∗

positioned starting at cell 0 if and only if the set

Aξ = { Frac[ξ(3/2)t] | t ∈ N }

is dense for ξ = α(x).

Every word appears positioned everywhere iff the set Aξ is

dense for ξ = 6nα(x), for all n ∈ Z.



The orbit of finite x ∈ SZ contains every word w ∈ S∗

positioned starting at cell 0 if and only if the set

Aξ = { Frac[ξ(3/2)t] | t ∈ N }

is dense for ξ = α(x).

Every word appears positioned everywhere iff the set Aξ is

dense for ξ = 6nα(x), for all n ∈ Z.

Unfortunately, denseness of Aξ is very difficult to establish for

specific ξ – it has been studied for over 100 years.

H. Weyl H (1916) “Über die Gleichverteilung von Zahlen

modulo Eins”

Shows that Aξ is dense for almost all ξ. The set of

exceptions has measure zero.



Conjecture. The orbit of every non-zero finite initial

configuration under F
×

3

2

is dense.



Conjecture. The orbit of every non-zero finite initial

configuration under F
×

3

2

is dense.

CA F
×

3

2

is related also to other difficult open problems.

K. Mahler (1968) “An unsolved problem on the powers of 3/2”



Mahler’s Problem. Does there exist ξ > 0 such that

∀t ∈ N : Frac[ξ(3/2)t] <
1
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A small modification to F×3

makes it compute the Collatz-

function

n 7→







n/2, for n even,

3n+ 1, for n odd.



We add a new state that indicates the position of the

decimal point.

A CA to calculate the Collatz-function:
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decimal point.

A CA to calculate the Collatz-function:
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1) Apply F×3 to multiply the current number by 3.



We add a new state that indicates the position of the

decimal point.

A CA to calculate the Collatz-function:

15 2

3 42

2) If the last digit before becomes zero (i.e. the number

was even), the point is moved one position to the left.

This amount to dividing the number by 6, so the combined

operation is

n 7→ n/2.



We add a new state that indicates the position of the

decimal point.

A CA to calculate the Collatz-function:

15 3

On odd numbers. . .



We add a new state that indicates the position of the

decimal point.

A CA to calculate the Collatz-function:
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2) If the last digit before becomes three (i.e. the number

was odd), it is incremented to become four. The point

stays put.

This amount to operation

n 7→ 3n+ 1.



We add a new state that indicates the position of the

decimal point.

A CA to calculate the Collatz-function:

15

3 42

3
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2) If the last digit before becomes three (i.e. the number

was odd), it is incremented to become four. The point

stays put.

This amount to operation

n 7→ 3n+ 1.



The Collatz conjecture then states that for any w ∈ S∗ \ 0∗,

the finite initial configuration

. . . 00 w 00 . . .

becomes eventually

. . . 00 1 00 . . .
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T. Cloney, E. Goles, G.Y. Vichniac (1987) “The 3x+1

Problem: A Quasi Cellular Automaton”

The first paper where a cellular automaton like model was

used to study the Collatz-function!
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Open problems

Ollinger’s second question:

Problem 1. Does there exist a CA with a finite initial

configuration whose orbit is dense ? Does F
×

3

2

have this

property ?

F×3 is one-dimensional.

Problem 2. Do there exist higher dimensional cellular

automata with the property that the orbit of some finite

configuration contains all finite patterns ?

F×3 has six states. This method does not provide

examples with fewer states.

Problem 3. Does there exist a binary state CA with the

property that the orbit of some finite configuration contains all

finite patterns ?


