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Do the following statements

I the four colour theorem,

I Fermat’s great theorem,

I the Riemann hypothesis,

I the Collatz’s conjecture?

share a common mathematical property?

And, if there is such a property, how can we use it for a better
understanding of these statements?
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Computability and Complexity 1

Universality theorem. There exists (and can be constructed) a
(Turing) machine U—called universal—such that for every machine
V there exists a constant c = cU,V such that for every program σ
there exists a σ′ for which the following two conditions hold:

I U(σ′) = V (σ),

I |σ′| ≤ |σ|+ c.
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Computability and Complexity 2

The halting problem for a machine V is the function ΛV defined
by

ΛV (σ) =

{
1, if V (σ) =∞,
0, otherwise .

Undecidability theorem. If U is universal, then ΛU is
incomputable, i.e. the halting problem for a universal machine is
undecidable.
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Π1–problems

A problem π of the form

∀σP(σ),

where P is a computable predicate is called a Π1–problem.

I Any Π1–problem is finitely refutable.

I For every Π1–problem π = ∀σP(σ) we associate the program

σπ = inf{n : P(n) = false}

which satisfies:

π is true iff U(σπ) =∞.

I Solving the halting problem for U solves all Π1–problems.
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Examples

The problems

I the four colour theorem,

I Fermat’s great theorem,

I the Riemann hypothesis,

I the Collatz’s conjecture

are all Π1–problems.

Of course, not all problems are Π1–problems. For example, the
twin prime conjecture.
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Complexity

Complexity

CU(π) = min{|ΠP | : π = ∀nP(n)}.

Invariance theorem. If U,U ′ are universal, then there exists a
constant c = cU,U′ such that for all π = ∀nP(n), P computable:

|CU(π)− CU′(π)| ≤ c .

Incomputability theorem. If U is universal, then CU is
incomputable.
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Complexity Classes

Because of the incomputability theorem, we work with upper
bounds for CU . As the exact value of CU is not important, we
classify Π1–problems into the following classes:

CU,n = {π : π is a Π1–problem,CU(π) ≤ n kbit}.
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Some Results

I CU,1: Legendre’s conjecture (there is a prime number between
n2 and (n + 1)2, for every positive integer n), Fermat’s last
theorem (there are no positive integers x , y , z satisfying the
equation xn + yn = zn, for any integer value n > 2) and
Goldbach’s conjecture (every even integer greater than 2 can
be expressed as the sum of two primes)

I CU,2: Dyson’s conjecture (the reverse of a power of two is
never a power of five)

I CU,3: the Riemann hypothesis (all non-trivial zeros of the
Riemann zeta function have real part 1/2)

I CU,4 the four colour theorem (the vertices of every planar
graph can be coloured with at most four colours so that no
two adjacent vertices receive the same colour)
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More Results and Open Questions

I CU,5: ?

I CU,6: ?

I CU,7: Euler’s integer partition theorem (the number of
partitions of an integer into odd integers is equal to the
number of partitions into distinct integers).

I In which class is the Collatz conjecture? (given any positive
integer a1 there exists a natural N such that aN = 1, where

an+1 =

{
an/2, if an is even,
3an + 1, otherwise .

)
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Inductive Complexity and Complexity Classes of First Order

By transforming each program ΠP for U into a program Πind ,1
P for

U ind (U working in “inductive mode”) we can define the inductive
complexity of first order by

C ind ,1
U (π) = min{|Πind ,1

P | : π = ∀nP(n)},

the inductive complexity classes of order one by

Cind ,1
U,n = {π : π is a Π1–statement,C ind ,1

U (π) ≤ n kbit},

and prove that

CU,n = Cind ,1
U,n .
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Inductive Complexity and Complexity Classes of Higher Orders

By allowing inductive programs of order 1 as routines we get
inductive programs of order 2, so we can define the inductive
complexity of second order (for more complex problems)

C ind ,2
U (ρ) = min{|M ind ,2

R | : ρ = ∀n∃iR(n, i)},

and the inductive complexity class of second order:

Cind ,2
U,n = {ρ : ρ = ∀n∃iR(n, i),C ind ,2

U (ρ) ≤ n kbit}.

The Collatz conjecture is in the class Cind ,2
U,3 .
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Two open problems

What is the complexity of

I P vs NP problem?

I Poincaré’s conjecture?
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Thank you

VIVE ERIC!
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